全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Extraction of Fast Changes in the Structure of a Disordered Ensemble of Photoexcited Biomolecules

DOI: 10.1155/2013/750371

Full-Text   Cite this paper   Add to My Lib

Abstract:

Using pump-probe experiments of varying time intervals between pump and probe, the method of time-resolved crystallography has given many insights into the fast time variations of crystallized molecules as a result of photoexcitation. We show here that quantities extractable from multiple diffraction patterns of dissolved molecules in random orientations, as measured using powerful ultrashort pulses of X-rays, also contain information about structural changes of a molecule on photoexcitation. 1. Introduction The X-ray free-electron laser (XFEL) is a new instrument which promises to revolutionize our study of the atomic architecture of matter [1, 2]. The brightness of the X-rays produced by this instrument is some 10 billion times greater than any existing X-ray source (including present-day synchrotrons). This allows the possibility of measuring signals from scattered X-rays of even large single molecules, like proteins. The traditional limitation of X-ray flux for fragile biomolecules can be circumvented completely due to the fact that this very bright radiation is delivered in ultra-short pulses [3–5]. Although the molecules under study will undoubtedly suffer catastrophic radiation damage, the shortness of the pulse enables a signal to be measured from the particle before its disintegration. This enables structure determination of reproducible biomolecules by essentially an unlimited X-ray flux and is in one sense a complete solution of the radiation damage problem. It should also be possible to combine the ultra brightness [6] of the radiation with the ultra shortness of its duration [7] to enable the gathering of information never been before possible, for example, the changes in the structure of an uncrystallized biomolecule as a result of some stimulus, such as photoexcitation, as a function of time since the photoexcitation. Since this time can be very short, the possibility then exists of experimentally following the course of rapid chemical reactions of such uncrystallized biomolecules, as with crystallized ones [7] by the technique of time-resolved diffraction [8–10]. This may allow for the first time the study of biochemical reactions of molecules in aqueous solution in which they occur in nature. An idea proposed for sample delivery of hydrated molecules to an XFEL beam is to inject a continuous stream of solutions containing the molecules into the sample chamber [11–13]. The incident X-rays then scatter off the protein solution. The design specification of the LCLS is to produce an X-ray beam of perhaps 0.1 microns in diameter at the

References

[1]  R. Neutzo, R. Wouts, D. van der Spoel, E. Weckert, and J. Hajdu, “Potential for biomolecular imaging with femtosecond X-ray pulses,” Nature, vol. 406, no. 6797, pp. 752–757, 2000.
[2]  R. Neutze and K. Moffat, “Time-resolved structural studies at synchrotrons and X-ray free electron lasers: opportunities and challenges,” Current Opinion in Structural Biology, vol. 22, no. 5, pp. 651–659, 2012.
[3]  A. Cho, “What shall we do with an X-ray laser?” Science, vol. 330, no. 6010, pp. 1470–1471, 2010.
[4]  H. N. Chapman, P. Fromme, A. Barty, et al., “Femtosecond X-ray protein nanocrystallography,” Nature, vol. 470, no. 7332, pp. 73–81, 2011.
[5]  S. Boutet, L. Lomb, G. J. Williams, et al., “High-resolution protein structure determination by serial femtosecond crystallography,” Science, vol. 337, no. 6092, pp. 362–364, 2012.
[6]  D. M. Mills, J. R. Heliwell, A. Kwick, T. Ohta, I. A. Robinson, and A. Authier, “Report of the working group on synchrotron radiation nomenclature—brightness, spectral brightness or brilliance?” Journal of Synchrotron Radiation, vol. 12, no. 3, p. 385, 2005.
[7]  A. Aquila, M. S. Hunter, R. B. Doak, et al., “Time-resolved protein nanocrystallography using an X-ray free-electron laser,” Optics Express, vol. 20, no. 3, pp. 2706–2716, 2012.
[8]  K. Moffat, “Time-resolved macromolecular crystallography,” Annual Review of Biophysics and Biophysical Chemistry, vol. 18, pp. 309–332, 1989.
[9]  K. Moffat, “Time-resolved biochemical crystallography: a mechanistic perspective,” Chemical Reviews, vol. 101, no. 6, pp. 1569–1581, 2001.
[10]  M. Schmidt, H. Ihee, R. Pahl, and V. Srajer, “Protein-ligand interaction probed by time-resolved crystallography,” Methods in Molecular Biology, vol. 305, pp. 115–154, 2005.
[11]  U. Weierstall, J. C. Spence, and R. B. Doak, “Injector for scattering measurements on fully solvated biospecies,” Review of Scientific Instruments, vol. 83, Article ID 035108, 12 pages, 2012.
[12]  A. M. Ga?án-Calvo, D. P. DePonte, M. A. Herrada, J. C. H. Spence, U. Weierstall, and R. B. Doak, “Liquid capillary micro/nanojets in free-jet expansion,” Small, vol. 6, no. 7, pp. 822–824, 2010.
[13]  D. A. Shapiro, H. N. Chapman, D. DePonte et al., “Powder diffraction from a continuous microjet of submicrometer protein crystals,” Journal of Synchrotron Radiation, vol. 15, no. 6, pp. 593–599, 2008.
[14]  H. Ihee, S. Rajagopal, V. Srajer et al., “Visualizing reaction pathways in photoactive yellow protein from nanoseconds to seconds,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 20, pp. 7145–7150, 2005.
[15]  M. Schmidt, R. Pahl, V. Srajer et al., “Protein kinetics: structures of intermediates and reaction mechanism from time-resolved X-ray data,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 14, pp. 4799–4804, 2004.
[16]  F. Schotte, H. S. Cho, V. R. Kaila et al., “Watching a signaling protein function in real time via 100-ps time-resolved Laue crystallography,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 47, pp. 19256–19261, 2012.
[17]  Y. O. Jung, J. H. Lee, J. Kim et al., “Volume-conserving trans-cis isomerization pathways in photoactive yellow protein visualized by picosecond X-ray crystallography,” Nature Chemistry, vol. 5, no. 3, pp. 212–220.
[18]  M. Schmidt, unpublished.
[19]  D. P. De Ponte, U. Weierstall, D. Starodub, J. Warner, J. C. H. Spence, and R. B. Doak, “Gas dynamic virtual nozzle for generation of microscopic droplet streams,” Journal of Physics D, vol. 41, no. 19, Article ID 195505, 2008.
[20]  C. Y. Yoon, P. Schwander, C. Abergel, et al., “Unsupervised classification of single-particle X-ray diffraction snapshots by spectral clustering,” Optics Express, vol. 19, no. 17, pp. 16542–16549, 2011.
[21]  Z. Kam, “Determination of macromolecular structure in solution by spatial correlation of scattering fluctuations,” Macromolecules, vol. 10, no. 5, pp. 927–934, 1977.
[22]  D. K. Saldin, V. L. Shneerson, R. Fung, and A. Ourmazd, “Structure of isolated biomolecules obtained from ultrashort X-ray pulses: exploiting the symmetry of random orientations,” Journal of Physics: Condensed Matter, vol. 21, Article ID 134014, 11 pages, 2009.
[23]  V. Elser, “Strategies for processing diffraction data from randomly oriented particles,” Ultramicroscopy, vol. 111, no. 7, pp. 788–792, 2011.
[24]  D. K. Saldin, H.-C. Poon, P. Schwander, M. Uddin, and M. Schmidt, “Reconstructing an icosahedral virus from single-particle diffraction experiments,” Optics Express, vol. 19, no. 18, pp. 17318–17335, 2011.
[25]  H.-C. Poon, P. Schwander, M. Uddin, and D. K. Saldin, “Fiber diffraction without fibers,” submitted for publication.
[26]  S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133