全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Electrodynamics of Metallic Superconductors

DOI: 10.1155/2013/104379

Full-Text   Cite this paper   Add to My Lib

Abstract:

The theoretical and experimental aspects of the microwave, terahertz, and infrared properties of superconductors are discussed. Electrodynamics can provide information about the superconducting condensate as well as about the quasiparticles. The aim is to understand the frequency dependence of the complex conductivity, the change with temperature and time, and its dependence on material parameters. We confine ourselves to conventional metallic superconductors, in particular, Nb and related nitrides and review the seminal papers but also highlight latest developments and recent experimental achievements. The possibility to produce well-defined thin films of metallic superconductors that can be tuned in their properties allows the exploration of fundamental issues, such as the superconductor-insulator transition; furthermore it provides the basis for the development of novel and advanced applications, for instance, superconducting single-photon detectors. 1. Introduction 1.1. Historical Developments The history of superconductivity in the 1950s is one of the best examples of how the interplay of experiment and theory advances science towards a profound understanding. After having moved to Urbana in 1951 and even more intense after having received the Nobel Prize for the development of the transistor in 1956, John Bardeen was pressing to solve the longstanding problem of superconductivity. During these years he was very well aware of the experimental facts and recent developments but also triggered experimental investigations and pushed certain measurements. The presence of an energy gap in the density of states of a superconductor (and thus in the excitation spectrum) can be inferred from the temperature dependence of the specific heat that had been measured already in Heike Kamerlingh Onnes’ laboratory in Leiden [1]; however, it was Bardeen who seriously discussed this idea in more detail in 1955 [2, 3] based on considerations proposed by Welker [4] years earlier. He assumed “that in the superconducting state a finite energy gap is required to excite electrons from the surface of the Fermi sea.” Cooper developed this concept further when he introduced the electron pairs in the following year [5]. In the seminal BCS paper of 1957 [6], Bardeen, Cooper and Schrieffer finally derived the fundamental ratio and the temperature dependence of the energy gap. In their calculation of the matrix elements, they explicitly refer to the ongoing NMR relaxation-rate experiments by Hebel and Slichter [7, 8], ultrasound-attenuation measurements by Morse and Bohm [9], and

References

[1]  F. London, Superfluids, vol. 1 of Macroscopic Theory of Superconductivity, John Wiley & Sons, New York, NY, USA, 1950.
[2]  J. Bardeen, “Theory of the Meissner effect in superconductors,” Physical Review, vol. 97, no. 6, pp. 1724–1725, 1955.
[3]  J. Bardeen, “Theory of Supercondgctivity,” in Handbuch der Physik, vol. 15, pp. 274–369, Springer, Berlin, Germany, 1956.
[4]  H. Welker, “Supraleitung und magnetische Austauschwechselwirkung,” Zeitschrift für Physik, vol. 114, no. 9-10, pp. 525–551, 1939.
[5]  L. N. Cooper, “Bound electron pairs in a degenerate fermi gas,” Physical Review, vol. 104, no. 4, pp. 1189–1190, 1956.
[6]  J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Physical Review, vol. 108, no. 5, pp. 1175–1204, 1957.
[7]  L. C. Hebel and C. P. Slichter, “Nuclear relaxation in superconducting aluminum,” Physical Review, vol. 107, no. 3, p. 901, 1957.
[8]  L. C. Hebel and C. P. Slichter, “Nuclear spin relaxation in normal and superconducting aluminum,” Physical Review, vol. 113, no. 6, pp. 1504–1519, 1959.
[9]  R. W. Morse and H. V. Bohm, “Superconducting energy gap from ultrasonic attenuation measurements,” Physical Review, vol. 108, no. 4, pp. 1094–1096, 1957.
[10]  R. E. Glover III and M. Tinkham, “Transmission of superconducting films at millimeter-microwave and far infrared frequencies,” Physical Review, vol. 104, no. 3, pp. 844–845, 1956.
[11]  M. Tinkham, “Energy gap interpretation of experiments on infrared transmission through superconducting films,” Physical Review, vol. 104, no. 3, pp. 845–846, 1956.
[12]  R. E. Glover III and M. Tinkham, “Conductivity of superconducting films for photon energies between 0.3 and 40kTc,” Physical Review, vol. 108, no. 2, pp. 243–256, 1957.
[13]  M. J. Buckingham, “Very high frequency absorption in superconductors,” Physical Review, vol. 101, no. 4, pp. 1431–1432, 1956.
[14]  G. S. Blevins, W. Gordy, and W. M. Fairbank, “Superconductivity at millimeter wave frequencies,” Physical Review, vol. 100, no. 4, pp. 1215–1216, 1955.
[15]  M. Tinkham and R. E. Glover III, “Superconducting energy gap inferences from thin-film transmission data,” Physical Review, vol. 110, no. 3, pp. 778–779, 1958.
[16]  A. T. Forrester, “Superconducting energy gap inferences from thin-film transmission data,” Physical Review, vol. 110, no. 3, pp. 776–778, 1958.
[17]  M. A. Biondi, A. T. Forrester, M. P. Garfunkel, and C. B. Satterthwaite, “Experimental evidence for an energy gap in superconductors,” Reviews of Modern Physics, vol. 30, no. 4, pp. 1109–1136, 1958.
[18]  M. A. Biondi, M. P. Garfunkel, and A. O. McCoubrey, “Millimeter wave absorption in superconducting aluminum,” Physical Review, vol. 101, no. 4, pp. 1427–1429, 1956.
[19]  M. A. Biondi, M. P. Garfunkel, and A. O. McCoubrey, “Microwave measurements of the energy gap in superconducting aluminum,” Physical Review, vol. 108, no. 2, pp. 495–497, 1957.
[20]  M. A. Biondi, A. T. Forrester, and M. P. Garfunkel, “Millimeter wave studies of superconducting tin,” Physical Review, vol. 108, no. 2, pp. 497–498, 1957.
[21]  M. A. Biondi and M. P. Garfunkel, “Measurement of the temperature variation of the energy gap in superconducting aluminum,” Physical Review Letters, vol. 2, no. 4, pp. 143–145, 1959.
[22]  M. A. Biondi and M. P. Garfunkel, “Millimeter wave absorption in superconducting aluminum. I. Temperature dependence of the energy gap,” Physical Review, vol. 116, no. 4, pp. 853–861, 1959.
[23]  M. A. Biondi and M. P. Garfunkel, “Millimeter wave absorption in superconducting aluminum. II. Calculation of the skin depth,” Physical Review, vol. 116, no. 4, pp. 862–867, 1959.
[24]  M. Tinkham, “Absorption of electromagnetic radiation in superconductors,” Physica, vol. 24, supplement 1, pp. S35–S41, 1958.
[25]  R. A. Ferrell and R. E. Glover III, “Conductivity of superconducting films: a sum rule,” Physical Review, vol. 109, no. 4, pp. 1398–1399, 1958.
[26]  M. Tinkham and R. A. Ferrell, “Determination of the superconducting skin depth from the energy gap and sum rule,” Physical Review Letters, vol. 2, no. 8, pp. 331–333, 1959.
[27]  D. C. Mattis and J. Bardeen, “Theory of the anomalous skin effect in normal and superconducting metals,” Physical Review, vol. 111, no. 2, pp. 412–417, 1958.
[28]  W. Zimmermann, E. H. Brandt, M. Bauer, E. Seider, and L. Genzel, “Optical conductivity of BCS superconductors with arbitrary purity,” Physica C, vol. 183, no. 1–3, pp. 99–104, 1991.
[29]  K. Steinberg, M. Scheffler, and M. Dressel, “Quasiparticle response of superconducting aluminum to electromagnetic radiation,” Physical Review B, vol. 77, no. 21, Article ID 214517, 2008.
[30]  D. M. Ginsberg, P. L. Richards, and M. Tinkham, “Apparent structure on the far infrared energy gap in superconducting lead and mercury,” Physical Review Letters, vol. 3, no. 7, pp. 337–338, 1959.
[31]  D. M. Ginsberg and M. Tinkham, “Far infrared transmission through superconducting films,” Physical Review, vol. 118, no. 4, pp. 990–1000, 1960.
[32]  P. L. Richards and M. Tinkham, “Far-infrared energy gap measurements in bulk superconducting in, Sn, Hg, Ta, V, Pb, and Nb,” Physical Review, vol. 119, no. 2, pp. 575–590, 1960.
[33]  L. H. Palmer and M. Tinkham, “Far-infrared absorption in thin superconducting lead films,” Physical Review, vol. 165, no. 2, pp. 588–595, 1968.
[34]  M. Tinkham, “The electromagnetic properties of superconductors,” Reviews of Modern Physics, vol. 46, no. 4, pp. 587–596, 1974.
[35]  P. Wyder, “Far-infrared and superconductivity,” Infrared Physics, vol. 16, no. 1-2, pp. 243–251, 1976.
[36]  K. Holczer, O. Klein, and G. Grüner, “Observation of the conductivity coherence peak in superconducting Pb,” Solid State Communications, vol. 78, no. 10, pp. 875–877, 1991.
[37]  O. Klein, E. J. Nicol, K. Holczer, and G. Grüner, “Conductivity coherence factors in the conventional superconductors Nb and Pb,” Physical Review B, vol. 50, no. 9, pp. 6307–6316, 1994.
[38]  A. B. Pippard, “Metallic conduction at high frequencies and low temperatures,” Advances in Electronics and Electron Physics, vol. 6, pp. 1–45, 1954.
[39]  A. B. Pippard, “The anomalous skin effect in anisotropic metals,” Proceedings of the Royal Society of London A, vol. 224, no. 1157, pp. 273–282, 1954.
[40]  J. R. Waldram, “Surface impedance of superconductors,” Advances in Physics, vol. 13, no. 49, pp. 1–88, 1964.
[41]  M. Tinkham, Introduction to Superconductivity, Mc-Graw Hill, New York, NY, USA, 1st edition, 1975.
[42]  M. Tinkham, Introduction to Superconductivity, Mc-Graw Hill, New York, NY, USA, 2nd edition, 1996.
[43]  M. Tinkham, Introduction to Superconductivity, Dover Publication, Mineola, NY, USA, 2nd edition, 2004.
[44]  G. Rickayzen, Theory of Superconductivity, Interscience Publishers, New York, NY, USA, 1965.
[45]  R. D. Parks, Ed., Superconductivity, Vol. I and II, Marcel Dekker, New York, NY, USA, 1969.
[46]  M. Dressel and G. Grüner, Electrodynamics of Solids, Cambridge University Press, Cambridge, UK, 2002.
[47]  D. N. Basov, R. D. Averitt, D. van der Marel, M. Dressel, and K. Haule, “Electrodynamics of correlated electron materials,” Reviews of Modern Physics, vol. 83, no. 2, pp. 471–541, 2011.
[48]  D. Sherman, G. Kopnov, D. Shahar, and A. Frydman, “Measurement of a superconducting energy gap in a homogeneously amorphous insulator,” Physical Review Letters, vol. 108, no. 17, Article ID 177006, 2012.
[49]  B. Sacépé, C. Chapelier, T. I. Baturina, V. M. Vinokur, M. R. Baklanov, and M. Sanquer, “Pseudogap in a thin film of a conventional superconductor,” Nature Communications, vol. 1, no. 9, article 140, 2010.
[50]  Y. Mizukami, H. Shishido, T. Shibauchi et al., “Extremely strong-coupling superconductivity in artificial two-dimensional Kondo lattices,” Nature Physics, vol. 7, no. 11, pp. 849–853, 2011.
[51]  S. P. Chockalingam, M. Chand, A. Kamlapure et al., “Tunneling studies in a homogeneously disordered s-wave superconductor: NbN,” Physical Review B, vol. 79, no. 9, Article ID 094509, 2009.
[52]  T. Timusk and B. Statt, “The pseudogap in high-temperature superconductors: an experimental survey,” Reports on Progress in Physics, vol. 62, no. 1, pp. 61–122, 1999.
[53]  N. D. Basov and T. Timusk, “Electrodynamics of high—Tc superconductors,” Reviews of Modern Physics, vol. 77, no. 2, pp. 721–729, 2005.
[54]  U. S. Pracht, M. Scheffler, M. Dressel, D. F. Kalok, C. Strunk, and T. I. Baturina, “Direct observation of the superconducting gap in a thin film of titanium nitride using terahertz spectroscopy,” Physical Review B, vol. 86, no. 18, Article ID 184503, 2012.
[55]  E. F. C. Driessen, P. C. J. J. Coumou, R. R. Tromp, P. J. de Visser, and T. M. Klapwijk, “Strongly disordered tin and nbtin s-wave superconductors probed by microwave electrodynamics,” Physical Review Letters, vol. 109, no. 10, Article ID 107003, 2012.
[56]  M. R. Vissers, M. P. Weides, J. S. Kline, M. Sandberg, and D. P. Pappas, “Identifying capacitive and inductive loss in lumped element superconducting hybrid titanium nitride/aluminum resonators,” Applied Physics Letters, vol. 101, Article ID 022601, 2012.
[57]  D. Henrich, S. D?rner, M. Hofherr et al., “Broadening of hotspot response spectrum of superconducting NbN nanowire singlephoton detector with reduced nitrogen content,” Journal of Applied Physics, vol. 112, no. 7, Article ID 074511, 2012.
[58]  K. Il'in, M. Hofherr, D. Rall et al., “Ultra-thin TaN films for superconducting nanowire single-photon detectors,” Journal of Low Temperature Physics, vol. 167, pp. 809–814, 2011.
[59]  A. Engel, A. Schilling, K. Ilin, and M. Siegel, “Dependence of count rate on magnetic field in superconducting thin-film TaN single-photon detectors,” Physical Review B, vol. 86, Article ID 140506, 2012.
[60]  A. J. Kerman, E. A. Dauler, W. E. Keicher et al., “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Applied Physics Letters, vol. 88, no. 11, Article ID 111116, 2006.
[61]  G. Gol'Tsman, O. Okunev, G. Chulkova et al., “Fabrication and properties of an ultrafast NbN hot-electron single-photon detector,” IEEE Transactions on Applied Superconductivity, vol. 11, no. 1, pp. 574–577, 2001.
[62]  J. Zhang, W. Slysz, A. Verevkin et al., “Response time characterization of NbN superconducting single-photon detectors,” IEEE Transactions on Applied Superconductivity, vol. 13, no. 2, pp. 180–183, 2003.
[63]  C. M. Natarajan, M. G. Tanner, and R. H. Hadfields, “Superconducting nanowire single-photon detectors: physics and applications,” Superconductor Science and Technology, vol. 25, no. 6, Article ID 063001, 2012.
[64]  P. B. Miller, “Surface impedance of superconductors,” Physical Review, vol. 118, no. 4, pp. 928–934, 1960.
[65]  A. A. Abrikosov, L. P. Gorkov, and I. M. Khalatnikov, “A Superconductor in a high frequency field,” Soviet Physics: JETP, vol. 8, no. 1, pp. 182–189, 1959.
[66]  A. A. Abrikosov, L. P. Gorkov, and I. M. Khalatnikov, “Analysis of experimental data relating to the surface impedance of superconductors,” Soviet Physics: JETP, vol. 10, no. 1, pp. 132–134, 1960.
[67]  J.-J. Chang and D. J. Scalapino, “Gap enhancement in superconducting thin films due to microwave irradiation,” Journal of Low Temperature Physics, vol. 29, no. 5-6, pp. 477–485, 1977.
[68]  J.-J. Chang and D. J. Scalapino, “Kinetic-equation approach to nonequilibrium superconductivity,” Physical Review B, vol. 15, no. 5, pp. 2651–2670, 1977.
[69]  J.-J. Chang and D. J. Scalapino, “Nonequilibrium superconductivity,” Journal of Low Temperature Physics, vol. 31, no. 1-2, pp. 1–32, 1978.
[70]  D. N. Langenberg and A. L. Larkin, Eds., Nonequilibrium Superconductivity, North-Holland, Amserdam, The Netherlands, 1986.
[71]  N. Kopnin, Theory of Nonequilibrium Superconductivity, Oxford University Press, Oxford, UK, 2009.
[72]  U. S. Pracht, E. Heintze, C. Clauss et al., “Electrodynamics of the superconducting state in ultra-thin films at THz frequencies,” IEEE Transactions on Terahertz Science and Technology, vol. 3, no. 3, pp. 269–280, 2013.
[73]  L. Leplae, “Derivation of an expression for the conductivity of superconductors in terms of the normal-state conductivity,” Physical Review B, vol. 27, no. 3, pp. 1911–1912, 1983.
[74]  J.-J. Chang and D. J. Scalapino, “Electromagnetic response of layered superconductors,” Physical Review B, vol. 40, no. 7, pp. 4299–4305, 1989.
[75]  A. J. Berlinsky, C. Kallin, G. Rose, and A.-C. Shi, “Two-fluid interpretation of the conductivity of clean BCS superconductors,” Physical Review B, vol. 48, no. 6, pp. 4074–4079, 1993.
[76]  S. B. Nam, “Theory of electromagnetic properties of superconducting and normal systems. I,” Physical Review, vol. 156, no. 2, pp. 470–486, 1967.
[77]  S. B. Nam, “Theory of electromagnetic properties of strong-coupling and impure superconductors. II,” Physical Review, vol. 156, no. 2, pp. 487–493, 1967.
[78]  O. Klein, S. Donovan, M. Dressel, and G. Grüner, “Microwave cavity perturbation technique: part I: principles,” International Journal of Infrared and Millimeter Waves, vol. 14, no. 12, pp. 2423–2457, 1993.
[79]  S. Donovan, O. Klein, M. Dressel, K. Holczer, and G. Grüner, “Microwave cavity perturbation technique: part II: experimental scheme,” International Journal of Infrared and Millimeter Waves, vol. 14, no. 12, pp. 2459–2487, 1993.
[80]  M. Dressel, O. Klein, S. Donovan, and G. Grüner, “Microwave cavity perturbation technique: part III: applications,” International Journal of Infrared and Millimeter Waves, vol. 14, no. 12, pp. 2489–2517, 1993.
[81]  M. Scheffler and M. Dressel, “Broadband microwave spectroscopy in Corbino geometry for temperatures down to 1.7?K,” Review of Scientific Instruments, vol. 76, no. 7, Article ID 074702, 2005.
[82]  M. Scheffler, S. Kilic, and M. Dressel, “Strip-shaped samples in a microwave Corbino spectrometer,” Review of Scientific Instruments, vol. 78, no. 8, Article ID 086106, 2007.
[83]  K. Steinberg, M. Scheffler, and M. Dressel, “Broadband microwave spectroscopy in Corbino geometry at 3He temperatures,” Review of Scientific Instruments, vol. 83, no. 2, Article ID 024704, 2012.
[84]  R. P. S. M. Lobo, J. D. LaVeigne, D. H. Reitze et al., “Photoinduced time-resolved electrodynamics of superconducting metals and alloys,” Physical Review B, vol. 72, no. 2, Article ID 024510, 2005.
[85]  K. E. Kornelsen, M. Dressel, J. E. Eldridge, M. J. Brett, and K. L. Westra, “Far-infrared optical absorption and reflectivity of a superconducting NbN film,” Physical Review B, vol. 44, no. 21, pp. 11882–11887, 1991.
[86]  D. Karecki, R. E. Pe?a, and S. Perkowitz, “Far-infrared transmission of superconducting homogeneous NbN films: scattering time effects,” Physical Review B, vol. 25, no. 3, pp. 1565–1571, 1982.
[87]  M. ?indler, R. Tesa?, J. Kolá?ek, L. Skrbek, and Z. ?im?a, “Far-infrared transmission of a superconducting NbN film,” Physical Review B, vol. 81, no. 18, Article ID 184529, 2010.
[88]  R. Tesa?, M. ?indler, K. Ilin, J. Kolá?ek, M. Siegel, and L. Skrbek, “Terahertz thermal spectroscopy of a NbN superconductor,” Physical Review B, vol. 84, no. 13, Article ID 132506, 2011.
[89]  M. W. Coffey and J. R. Clem, “Theory of high-frequency linear response of isotropic type-II superconductors in the mixed state,” Physical Review B, vol. 46, no. 18, pp. 11757–11764, 1992.
[90]  M. W. Coffey and J. R. Clem, “Theory of microwave transmission and reflection in type-II superconductors in the mixed state,” Physical Review B, vol. 48, no. 1, pp. 342–350, 1993.
[91]  B. P. Gorshunov, G. V. Kozlov, A. A. Volkov et al., “Measurement of electrodynamic parameters of superconducting films in the far-infrared and submillimeter frequency ranges,” International Journal of Infrared and Millimeter Waves, vol. 14, no. 3, pp. 683–702, 1993.
[92]  B. P. Gorshunov, I. V. Fedorov, G. V. Kozlov, A. A. Volkov, and A. D. Semenov, “Dynamic conductivity and the coherence peak in the submillimeter spectra of superconducting NbN films,” Solid State Communications, vol. 87, no. 1, pp. 17–21, 1993.
[93]  B. Gorshunov, A. Volkov, I. Spektor et al., “Terahertz BWO-spectrosopy,” International Journal of Infrared and Millimeter Waves, vol. 26, no. 9, pp. 1217–1240, 2005.
[94]  B. P. Gorshunov, A. A. Volkov, A. S. Prokhorov et al., “Terahetz BWO spectroscopy of conductors and superconductors,” Quantum Electronics, vol. 37, no. 10, pp. 916–923, 2007.
[95]  M. Dressel, N. Drichko, B. Gorshunov, and A. Pimenov, “THz spectroscopy of superconductors,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 14, no. 2, pp. 399–406, 2008.
[96]  M. C. Nuss, K. W. Goossen, J. P. Gordon, P. M. Mankiewich, M. L. O'Malley, and M. Bhushan, “Terahertz time-domain measurement of the conductivity and superconducting band gap in niobium,” Journal of Applied Physics, vol. 70, no. 4, pp. 2238–2241, 1991.
[97]  A. V. Pronin, M. Dressel, A. Pimenov, A. Loidl, I. V. Roshchin, and L. H. Greene, “Direct observation of the superconducting energy gap developing in the conductivity spectra of niobium,” Physical Review B, vol. 57, no. 22, pp. 14416–14421, 1998.
[98]  U. Pracht, M. Scheffler, M. Dressel, K. S. Ilin, and M. Siegel, unpublished.
[99]  A. Semenov, B. Günther, U. B?ttger et al., “Optical and transport properties of ultrathin NbN films and nanostructures,” Physical Review B, vol. 80, no. 5, Article ID 054510, 2009.
[100]  E. Burstein, D. N. Langenberg, and B. N. Taylor, “Superconductors as quantum detectors for microwave and sub-millimeter-wave radiation,” Physical Review Letters, vol. 6, no. 3, pp. 92–94, 1961.
[101]  D. M. Ginsberg, “Upper limit for quasi-particle recombination time in a superconductor,” Physical Review Letters, vol. 8, no. 5, pp. 204–207, 1962.
[102]  J. R. Schrieffer and D. M. Ginsberg, “Calculation of the quasiparticle recombination time in a superconductor,” Physical Review Letters, vol. 8, no. 5, pp. 207–208, 1962.
[103]  A. Rothwarf and M. Cohen, “Rate of capture of electrons injected into superconducting lead,” Physical Review, vol. 130, no. 4, pp. 1401–1405, 1963.
[104]  A. Rothwarf and B. N. Taylor, “Measurement of recombination lifetimes in superconductors,” Physical Review Letters, vol. 19, no. 1, pp. 27–30, 1967.
[105]  L. R. Testardi, “Destruction of superconductivity by laser light,” Physical Review B, vol. 4, no. 7, pp. 2189–2196, 1971.
[106]  J. F. Federici, B. I. Greene, P. N. Saeta, D. R. Dykaar, F. Sharifi, and R. C. Dynes, “Direct picosecond measurement of photoinduced Cooper-pair breaking in lead,” Physical Review B, vol. 46, no. 17, pp. 11153–11156, 1992.
[107]  Experiments on NbN films by R. Kaindl, M. Carnahan, and D. Chemla at the Advanced Light Source of the Lawrance Berkeley National Laboratory. Figure reproduced from N. Gedik: THz spectroscopy of quasiparticle dynamics in complex materials, https://portal.slac.stanford.edu/sites/conf_public/THz_2012_09/presentations/gedik_Frontiers_of_THz_Science.pdf.
[108]  M. Beck, M. Klammer, S. Lang et al., “Energy-gap dynamics of superconducting NbN thin films studied by time-resolved terahertz spectroscopy,” Physical Review Letters, vol. 107, no. 17, Article ID 177007, 2011.
[109]  R. Matsunaga and R. Shimano, “Nonequilibrium BCS state dynamics induced by intense terahertz pulses in a superconducting NbN film,” Physical Review Letters, vol. 109, no. 18, Article ID 187002, 1 pages, 2012.
[110]  J.-J. Chang and D. J. Scalapino, “New instability in superconductors under external dynamic pair breaking,” Physical Review B, vol. 10, no. 9, pp. 4047–4049, 1974.
[111]  D. J. Scalapino and B. A. Huberman, “Onset of an inhomogeneous state in a nonequilibrium superconducting film,” Physical Review Letters, vol. 39, no. 21, pp. 1365–1368, 1977.
[112]  P. W. Anderson, “Theory of dirty superconductors,” Journal of Physics and Chemistry of Solids, vol. 11, no. 1-2, pp. 26–30, 1959.
[113]  M. Strongin, R. S. Thompson, O. F. Kammerer, and J. E. Crow, “Destruction of superconductivity in disordered near-monolayer films,” Physical Review B, vol. 1, no. 3, pp. 1078–1091, 1970.
[114]  R. C. Dynes, A. E. White, J. M. Graybeal, and J. P. Garno, “Breakdown of eliashberg theory for two-dimensional superconductivity in the presence of disorder,” Physical Review Letters, vol. 57, no. 17, pp. 2195–2198, 1986.
[115]  D. B. Haviland, Y. Liu, and A. M. Goldman, “Onset of superconductivity in the two-dimensional limit,” Physical Review Letters, vol. 62, no. 18, pp. 2180–2183, 1989.
[116]  J. M. Valles Jr., R. C. Dynes, and J. P. Garno, “Electron tunneling determination of the order-parameter amplitude at the superconductor-insulator transition in 2D,” Physical Review Letters, vol. 69, no. 24, pp. 3567–3570, 1992.
[117]  A. Yazdani and A. Kapitulnik, “Superconducting-insulating transition in two-dimensional a-MoGe thin films,” Physical Review Letters, vol. 74, no. 15, pp. 3037–3040, 1995.
[118]  A. M. Goldman and N. Markovi?, “Superconductor-insulator transitions in the two-dimensional limit,” Physics Today, vol. 51, no. 11, pp. 39–44, 1998.
[119]  M. A. Paalanen, A. F. Hebard, and R. R. Ruel, “Low-temperature insulating phases of uniformly disordered two-dimensional superconductors,” Physical Review Letters, vol. 69, no. 10, pp. 1604–1607, 1992.
[120]  V. F. Gantmakher, M. V. Golubkov, V. T. Dolgopolov, G. E. Tsydynzhapov, and A. A. Shashkin, “Destruction of localized electron pairs above the magnetic-field-driven superconductor-insulator transition in amorphous In-O films,” JETP Letters, vol. 68, no. 4, pp. 363–369, 1998.
[121]  V. Y. Butko and P. W. Adams, “Quantum metallicity in a two-dimensional insulator,” Nature, vol. 409, no. 6817, pp. 161–164, 2001.
[122]  V. F. Gantmakher, S. N. Ermolov, G. E. Tsydynzhapov, A. A. Zhukov, and T. I. Baturina, “Suppression of 2D superconductivity by the magnetic field: quantum corrections vs. the superconductor-insulator transition,” JETP Letters, vol. 77, no. 8, pp. 424–428, 2003.
[123]  N. Hadacek, M. Sanquer, and J.-C. Villégier, “Double reentrant superconductor-insulator transition in thin TiN films,” Physical Review B, vol. 69, no. 2, Article ID 024505, 2004.
[124]  G. Sambandamurthy, L. W. Engel, A. Johansson, and D. Shahar, “Superconductivity-Related Insulating Behavior,” Physical Review Letters, vol. 92, no. 10, Article ID 107005, 2004.
[125]  G. Sambandamurthy, L. W. Engel, A. Johansson, E. Peled, and D. Shahar, “Experimental evidence for a collective insulating state in two-dimensional superconductors,” Physical Review Letters, vol. 94, no. 1, Article ID 017003, 2005.
[126]  M. Steiner and A. Kapitulnik, “Superconductivity in the insulating phase above the field-tuned superconductor-insulator transition in disordered indium oxide films,” Physica C, vol. 422, no. 1-2, pp. 16–26, 2005.
[127]  T. I. Baturina, J. Bentner, C. Strunk, M. R. Baklanov, and A. Satta, “From quantum corrections to magnetic-field-tuned superconductor-insulator quantum phase transition in TiN films,” Physica B, vol. 359-361, pp. 500–502, 2005.
[128]  T. I. Baturina, C. Strunk, M. R. Baklanov, and A. Satta, “Quantum metallicity on the high-field side of the superconductor-insulator transition,” Physical Review Letters, vol. 98, no. 12, Article ID 127003, 2007.
[129]  B. Sacépé, C. Chapelier, T. I. Baturina, V. M. Vinokur, M. R. Baklanov, and M. Sanquer, “Disorder-induced inhomogeneities of the superconducting state close to the superconductor-insulator transition,” Physical Review Letters, vol. 101, no. 15, Article ID 157006, 2008.
[130]  B. Sacépé, T. Dubouchet, C. Chapelier et al., “Localization of preformed Cooper pairs in disordered superconductors,” Nature Physics, vol. 7, no. 3, pp. 239–244, 2011.
[131]  S. M. Hollen, H. Q. Nguyen, E. Rudisaile et al., “Cooper-pair insulator phase in superconducting amorphous Bi films induced by nanometer-scale thickness variations,” Physical Review B, vol. 84, no. 6, Article ID 064528, 2011.
[132]  V. M. Vinokur, T. I. Baturina, M. V. Fistul, A. Y. Mironov, M. R. Baklanov, and C. Strunk, “Superinsulator and quantum synchronization,” Nature, vol. 452, no. 7187, pp. 613–615, 2008.
[133]  S. Poran, E. Shimshoni, and A. Frydman, “Disorder-induced superconducting ratchet effect in nanowires,” Physical Review B, vol. 84, no. 1, Article ID 014529, 2011.
[134]  Y. Dubi, Y. Meir, and Y. Avishai, “Theory of the magnetoresistance of disordered superconducting films,” Physical Review B, vol. 73, no. 5, Article ID 054509, 2006.
[135]  Y. Dubi, Y. Meir, and Y. Avishai, “Nature of the superconductor-insulator transition in disordered superconductors,” Nature, vol. 449, no. 7164, pp. 876–880, 2007.
[136]  D. Kowal and Z. Ovadyahu, “Disorder induced granularity in an amorphous superconductor,” Solid State Communications, vol. 90, no. 12, pp. 783–786, 1994.
[137]  D. Kowal and Z. Ovadyahu, “Scale dependent superconductor-insulator transition,” Physica C, vol. 468, no. 4, pp. 322–325, 2008.
[138]  N. Trivedi, R. T. Scalettar, and M. Randeria, “Superconductor-insulator transition in a disordered electronic system,” Physical Review B, vol. 54, no. 6, pp. R3756–R3759, 1996.
[139]  Y. Imry, M. Strongin, and C. C. Homes, “An inhomogeneous Josephson phase in thin-film and high-Tc superconductors,” Physica C, vol. 468, no. 4, pp. 288–293, 2008.
[140]  M. V. Feigei'man, L. B. Ioffe, V. E. Kravtsov, and E. A. Yuzbashyan, “Eigenfunction fractality and pseudogap state near the superconductor-insulator transition,” Physical Review Letters, vol. 98, no. 2, Article ID 027001, 2007.
[141]  M. V. Feigel'man, L. B. Ioffe, V. E. Kravtsov, and E. Cuevas, “Fractal superconductivity near localization threshold,” Annals of Physics, vol. 325, no. 7, pp. 1390–1478, 2010.
[142]  K. Bouadim, Y. L. Loh, M. Randeria, and N. Trivedi, “Single- and two-particle energy gaps across the disorder-driven superconductor-insulator transition,” Nature Physics, vol. 7, no. 11, pp. 884–889, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133