全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Characterization of WO3 Thin Films Grown on Silicon by HFMOD

DOI: 10.1155/2013/591787

Full-Text   Cite this paper   Add to My Lib

Abstract:

We studied the effect of annealing temperature on the physical properties of WO3 thin films using different experimental techniques. WO3 has been prepared by hot-filament metal oxide deposition (HFMOD). The films, chemical stoichiometry was determined by X-ray photoelectron spectroscopy (XPS). The monoclinic single-phase nature of the as-deposited films, structure was changed to triclinic structure by annealing them at higher temperatures than 400°C, which has been determined by the X-ray diffraction analysis. By Raman scattering is confirmed the change of crystalline phase, of monoclinic to triclinic, since that lattice vibrational modes of as-deposited WO3 and annealed at 500°C present clearly differences. WO3 band gap energy can be varied from 2.92 to 3.15?eV by annealing WO3 from 0 to 500°C as was obtained by transmittance measurements. The photoluminescence response of the as-deposited film presents three radiative transitions observed at 2.85, 2.41, and 2.04?eV that could be associated with oxygen vacancies; the first one is shifted to higher energies as the annealing temperature is increased due to the change of crystalline phase of the WO3. 1. Introduction Transition metal oxides represent a large family of materials possessing various interesting properties, such as superconductivity, colossal magnetoresistance, and piezoelectricity. Among them, tungsten oxide is of great interest and has been investigated extensively for its distinctive properties. With outstanding electrochromic [1], photochromic [2], gas chromic [3], gas sensor [4], photocatalyst [5], and photoluminescence properties [6], as a result, tungsten oxide has been used to construct “smart-window,” antiglare rear view mirrors for automobiles, nonemissive displays, optical recording devices, solid-state gas sensors, humidity and temperature sensors, biosensors, photonic crystals, and so forth. WO3 thin films can be prepared by various deposition techniques such as thermal evaporation [3, 7], spray pyrolysis [8], sputtering [9], pulsed laser ablation [4], sol-gel coating [10], and chemical vapour deposition [11]. The purpose of this work is to characterize the WO3 layers deposited by hot filament metal oxide deposition (HFMOD) technique, which uses a metallic filament heated in a rarefied oxygen atmosphere [12]. The film is deposited on a substrate positioned near the filament, and the deposition rate is controlled by the filament temperature and the oxygen pressure, after they were annealed at a wide temperature range. This growth technique has some advantages compared to the

References

[1]  C. G. Granqvist, Handbook of Electrochromic Materials, Elsevier, Amsterdam, The Netherlands, 1995.
[2]  C. O. Avellaneda and L. O. S. Bulhoes, “Photochromic properties of WO3 and WO3:X (X = Ti, Nb, Ta and Zr) thin films,” Solid State Ionics, vol. 165, no. 1–4, pp. 117–121, 2003.
[3]  S. H. Lee, H. M. Cheong, P. Liu et al., “Gasochromic mechanism in a-WO3 thin films based on Raman spectroscopic studies,” Journal of Applied Physics, vol. 88, no. 5, pp. 3076–3078, 2000.
[4]  E. Gy?rgy, G. Socol, I. N. Mihailescu, C. Ducu, and S. Ciuca, “Structural and optical characterization of WO3 thin films for gas sensor applications,” Journal of Applied Physics, vol. 97, no. 9, Article ID 093527, 5 pages, 2005.
[5]  M. A. Gondal, A. Hameed, Z. H. Yamani, and A. Suwaiyan, “Laser induced photo-catalytic oxidation/splitting of water over α-Fe2O3, WO3, TiO2 and NiO catalysts: Activity comparison,” Chemical Physics Letters, vol. 385, no. 1-2, pp. 111–115, 2004.
[6]  M. Feng, A. L. Pan, H. R. Zhang et al., “Strong photoluminescence of nanostructured crystalline tungsten oxide thin films,” Applied Physics Letters, vol. 86, no. 14, Article ID 141901, 3 pages, 2005.
[7]  R. Azimirad, O. Akhavan, and A. Z. Moshfegh, “Influence of coloring voltage and thickness on electrochromical properties of e-beam eaporated WO3 thin films,” Journal of the Electrochemical Society, vol. 153, no. 2, pp. E11–E16, 2006.
[8]  J. Hao, S. A. Studenikin, and M. Cocivera, “Transient photoconductivity properties of tungsten oxide thin films prepared by spray pyrolysis,” Journal of Applied Physics, vol. 90, no. 10, pp. 5064–5069, 2001.
[9]  Y. Takeda, N. Kato, T. Fukano, A. Takeichi, T. Motohiro, and S. Kawai, “WO3/metal thin-film bllayered structures as optical recording materials,” Journal of Applied Physics, vol. 96, no. 5, pp. 2417–2422, 2004.
[10]  G. Garcia-Belmonte, P. R. Bueno, F. Fabregat-Santiago, and J. Bisquert, “Relaxation processes in the coloration of amorphous WO3 thin films studied by combined impedance and electro-optical measurements,” Journal of Applied Physics, vol. 96, no. 1, pp. 853–859, 2004.
[11]  M. Seman and C. A. Wolden, “Investigation of the role of plasma conditions on the deposition rate and electrochromic performance of tungsten oxide thin films,” Journal of Vacuum Science and Technology A, vol. 21, no. 6, pp. 1927–1933, 2003.
[12]  J. Díaz-Reyes, V. Dorantes-García, A. Pérez-Benítez, and J. A. Balderas-López, “Obtaining of films of tungsten trioxide (WO3) by resistive heating of a tungsten filament,” Superficies y Vacío, vol. 21, no. 2, pp. 12–17, 2008.
[13]  H. G. Pryce Lewis, T. B. Casserly, and K. K. Gleason, “Hot-filament chemical vapor deposition of organosilicon thin films from hexamethylcyclotrisiloxane and octamethylcyclotetrasiloxane,” Journal of the Electrochemical Society, vol. 148, no. 12, pp. f212–f220, 2001.
[14]  C. Li, K. C. Feng, Y. J. Fei, H. T. Yuan, Y. Y. Xiong, and K. Feng, “The influence of C60 as intermediate on the diamond nucleation on copper substrate in HFCVD,” Applied Surface Science, vol. 207, no. 1-4, pp. 169–175, 2003.
[15]  PDF-ICDD-Power Diffraction File, International Centre for Diffraction Data, USA, 2009.
[16]  R. Sivakumar, R. Gopalakrishnan, M. Jayachandran, and C. Sanjeeviraja, “Preparation and characterization of electron beam evaporated WO3 thin films,” Optical Materials, vol. 29, no. 6, pp. 679–687, 2007.
[17]  S. Santucci, C. Cantalini, M. Crivellari, L. Lozzi, L. Ottaviano, and M. Passacantando, “X-ray photoemission spectroscopy and scanning tunneling spectroscopy study on the thermal stability of WO3 thin films,” Journal of Vacuum Science and Technology A, vol. 18, no. 4 I, pp. 1077–1082, 2000.
[18]  J. G. Allpress, R. J. D. Tilley, and M. J. Sienko, “Examination of substoichiometric WO3-x crystals by electron microscopy,” Journal of Solid State Chemistry, vol. 3, no. 3, pp. 440–451, 1971.
[19]  E. Cazzanelli, C. Vinegoni, G. Mariotto, A. Kuzmin, and J. Purans, “Low-temperature polymorphism in tungsten trioxide powders and its dependence on mechanical treatments,” Journal of Solid State Chemistry, vol. 143, no. 1, pp. 24–32, 1999.
[20]  M. F. Daniel, B. Desbat, J. C. Lassegues, and R. Garie, “Infrared and Raman spectroscopies of rf sputtered tungsten oxide films,” Journal of Solid State Chemistry, vol. 73, no. 1, pp. 127–139, 1988.
[21]  H. N. Cui, Preparation and characterization of optical multilayered coatings for smart windows applications [Doctoral Thesis], University of Minho, 2005.
[22]  P. T?gtstr?m and U. Jansson, “Chemical vapour deposition of epitaxial WO3 films,” Thin Solid Films, vol. 352, no. 1-2, pp. 107–113, 1999.
[23]  G. A. de Wijs and R. A. de Groot, “Amorphous WO3: a first-principles approach,” Electrochimica Acta, vol. 46, no. 13-14, pp. 1989–1993, 2001.
[24]  M. F. Daniel, B. Desbat, J. C. Lassegues, B. Gerand, and M. Figlarz, “Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates,” Journal of Solid State Chemistry, vol. 67, no. 2, pp. 235–247, 1987.
[25]  E. Salje, “Crystal physics, diffraction, theoretical and general crystallography,” Acta Crystallographica Section A, vol. 31, no. 3, pp. 360–363, 1975.
[26]  A. Rougier, F. Portemer, A. Quédé, and M. El Marssi, “Characterization of pulsed laser deposited WO3 thin films for electrochromic devices,” Applied Surface Science, vol. 153, no. 1, pp. 1–9, 1999.
[27]  J. V. Gabrusenoks, P. D. Cikmach, A. R. Lusis, J. J. Kleperis, and G. M. Ramans, “Electrochromic colour centres in amorphous tungsten trioxide thin films,” Solid State Ionics, vol. 14, no. 1, pp. 25–30, 1984.
[28]  M. Regragui, M. Addou, A. Outzourhit et al., “Preparation and characterization of pyrolytic spray deposited electrochromic tungsten trioxide films,” Thin Solid Films, vol. 358, no. 1, pp. 40–45, 2000.
[29]  D. Gazzoli, M. Valigi, R. Dragone, A. Marucci, and G. Mattei, “Characterization of the zirconia-supported tungsten oxide system by laser Raman and diffuse reflectance spectroscopies,” Journal of Physical Chemistry B, vol. 101, no. 51, pp. 11129–11135, 1997.
[30]  P. C. Liao, C. S. Chen, W. S. Ho, Y. S. Huang, and K. K. Tiong, “Characterization of IrO2 thin films by Raman spectroscopy,” Thin Solid Films, vol. 301, no. 1-2, pp. 7–11, 1997.
[31]  A. Portinha, V. Teixeira, J. Carneiro, M. F. Costa, N. P. Barradas, and A. D. Sequeira, “Stabilization of ZrO2 PVD coatings with Gd2O3,” Surface and Coatings Technology, vol. 188-189, no. 1–3, pp. 107–115, 2004.
[32]  A. B. M. Harun-ur Rashid, M. Kishi, and T. Katoda, “Raman spectroscopic analysis of stress on GaAs-SiO2 interface and the effect of stress on tin diffusion in GaAs,” Journal of Applied Physics, vol. 80, no. 6, pp. 3540–3545, 1996.
[33]  S. Z. Karazhanov, Y. Zhang, A. Mascarenhas, S. Deb, and L.-W. Wang, “Oxygen vacancy in cubic WO3 studied by first-principles pseudopotential calculation,” Solid State Ionics, vol. 165, no. 1-4, pp. 43–49, 2003.
[34]  R. Chatten, A. V. Chadwick, A. Rougier, and P. J. D. Lindan, “The oxygen vacancy in crystal phases of WO3,” Journal of Physical Chemistry B, vol. 109, no. 8, pp. 3146–3156, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133