Zinc oxide (ZnO) thin films were grown by nonreactive RF sputtering at room temperature under varying argon pressures ( ). Their optical band gap was found to increase from 3.58 to 4.34?eV when the argon pressure increases from 2.67 to 10.66?Pa. After annealing at 200°C and 500°C, optical band gaps decrease considerably. The observed widening of the band gap with increasing can be understood as being a consequence of the poorer crystallinity of films grown at higher pressures. Measurements of morphological and electrical properties of these films correlate well with this picture. Our main aim is to understand the effects of on several physical properties of the films, and most importantly on its optical band gap. 1. Introduction ZnO is a wide-band-gap semiconductor with a high transparency in the whole visible range and electrical properties that can be tailored from insulating to semimetallic by doping. This has attracted strong interest in this material because of its potential for applications, which include transparent conducting electrodes, gas sensors, light emitting devices, laser diodes, and optical waveguides [1, 2]. ZnO thin films have been obtained by techniques such as sol-gel [3, 4], metal organic chemical vapor deposition [5, 6], pulsed laser deposition [7, 8], and sputtering [9, 10]. As compared to other deposition methods, sputtering has several advantages. Uniformity of film thickness over large areas, a high degree of film adhesion, and relatively simple scalability properties are some of the most important advantages. Several recent works [11–14] discuss the mechanisms involved in ZnO thin film growth by magnetron sputtering in a mixture of argon and oxygen, that is, by reactive sputtering, at varying Ar/O2 ratios. This technique produces films with a fixed optical band gap, in the absence of doping. Most applications of ZnO as a semiconductor, on the other hand, require the tailoring of the band gap. Band gap modulation of ZnO is usually obtained by doping with Cd and Mg ions [15]. A significant widening of the band gap, reaching values as high as 5.23?eV, has been reported for ZnMgO films [16, 17]. However, doping may sometimes be undesirable, for example, because this may compromise the crystallographic properties of the film [17]. Therefore, there is a strong interest in exploring different approaches to control the band gap in ZnO films. An approach to control band gap that has not been widely explored up to now consists in depositing ZnO from a ceramic target, without the addition of O2, under varying Ar pressures. This
References
[1]
V. Coleman, C. Jagadish, and D. Look, Zinc Oxide Bulk, Thin Films and Nanostructures, Processing, Properties and Applications, Elsevier, 2006.
[2]
K. Ellmer, A. Klein, and B. Rech, Transparent Conductive Zinc Oxide Basics and Applications in Thin Film Solar Cells, Springer, 2008.
[3]
L. Xu, X. Li, Y. Chen, and F. Xu, “Structural and optical properties of ZnO thin films prepared by sol-gel method with different thickness,” Applied Surface Science, vol. 257, no. 9, pp. 4031–4037, 2011.
[4]
M. Vishwas, K. N. Rao, A. R. Phani, K. V. A. Gowda, and R. P. S. Chakradhar, “Effect of annealing temperature on electrical and nano-structural properties of sol-gel derived ZnO thin films,” Journal of Materials Science, vol. 22, no. 9, pp. 1415–1419, 2011.
[5]
B. H. Kong, D. C. Kim, S. K. Mohanta, and H. K. Cho, “Influence of VI/II ratios on the growth of ZnO thin films on sapphire substrates by low temperature MOCVD,” Thin Solid Films, vol. 518, no. 11, pp. 2975–2979, 2010.
[6]
K. Seomoon, J. Lee, P. Jang, C. Jung, and K.-H. Kim, “Synthesis and characterization of ZnO thin films deposited via PE-MOCVD,” Current Applied Physics, vol. 11, no. 4, pp. S26–S29, 2011.
[7]
B. L. Zhu, X. Z. Zhao, F. H. Su et al., “Low temperature annealing effects on the structure and optical properties of ZnO films grown by pulsed laser deposition,” Vacuum, vol. 84, no. 11, pp. 1280–1286, 2010.
[8]
M. Stamataki, I. Fasaki, G. Tsonos, D. Tsamakis, and M. Kompitsas, “Annealing effects on the structural, electrical and H2 sensing properties of transparent ZnO thin films, grown by pulsed laser deposition,” Thin Solid Films, vol. 518, no. 4, pp. 1326–1331, 2009.
[9]
V. Tvarozek, I. Novotny, P. Sutta, S. Flickyngerova, K. Schtereva, and E. Vavrinsky, “Influence of sputtering parameters on crystalline structure of ZnO thin films,” Thin Solid Films, vol. 515, no. 24, pp. 8756–8760, 2007.
[10]
S. Mukhtar, A. Asadov, and W. Gao, “Microstructure of ZnO thin films produced by magnetron sputter oblique deposition,” Thin Solid Films, vol. 520, no. 9, pp. 3453–3457, 2012.
[11]
P.-T. Hsieh, Y.-C. Chen, K.-S. Kao, and C.-M. Wang, “Structural and luminescent characteristics of non-stoichiometric ZnO films by various sputtering and annealing temperatures,” Physica B, vol. 403, no. 1, pp. 178–183, 2008.
[12]
T. Matsuda, M. Furuta, T. Hiramatsu, H. Furuta, C. Li, and T. Hirao, “Thermal stability of ZnO thin film prepared by RF-magnetron sputtering evaluated by thermal desorption spectroscopy,” Applied Surface Science, vol. 256, no. 21, pp. 6350–6353, 2010.
[13]
M. Furuta, T. Hiramatsu, T. Matsuda, C. Li, H. Furuta, and T. Hirao, “Oxygen bombardment effects on average crystallite size of sputter-deposited ZnO films,” Journal of Non-Crystalline Solids, vol. 354, no. 17, pp. 1926–1931, 2008.
[14]
S.-R. Jian, H.-G. Chen, G.-J. Chen, J. S. C. Jang, and J.-Y. Juang, “Structural and nanomechanical properties of a-plane ZnO thin films deposited under different oxygen partial pressures,” Current Applied Physics, vol. 12, no. 3, pp. 849–853, 2012.
[15]
A. Janotti and C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Reports on Progress in Physics, vol. 72, no. 12, Article ID 126501, 2009.
[16]
D. Wang, T. Narusawa, T. Kawaharamura, M. Furuta, and C. Li, “Influence of sputtering pressure on band gap of Zn1-xMgxO thin films prepared by radio frequency magnetron sputtering,” Journal of Vacuum Science & Technology B, vol. 29, no. 5, Article ID 051205, 2011.
[17]
P. Kumar, J. P. Singh, Y. Kumar, A. Gaur, H. K. Malik, and K. Asokan, “Investigation of phase segregation in Zn1-xMgxO systems,” Current Applied Physics, vol. 12, no. 4, pp. 1166–1172, 2012.
[18]
Powder Diffraction File, Joint Committee on Powder Diffraction Standards, ASTM, Philadelphia, Pa, USA, 2003, Card 36–1451.
[19]
S.-Y. Chu, W. Water, and J.-T. Liaw, “Influence of postdeposition annealing on the properties of ZnO films prepared by RF magnetron sputtering,” Journal of the European Ceramic Society, vol. 23, no. 10, pp. 1593–1598, 2003.
[20]
D. Raoufi and T. Raoufi, “The effect of heat treatment on the physical properties of sol-gel derived ZnO thin films,” Applied Surface Science, vol. 255, no. 11, pp. 5812–5817, 2009.
[21]
E. Bertaud, International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, UK, 1968.
[22]
W. Z. Liu, H. Y. Xu, L. Wang, X. H. Li, and Y. C. Liu, “Size-controlled growth of ZnO nanowires by catalyst-free high-pressure pulsed laser deposition and their optical properties,” AIP Advances, vol. 1, no. 2, Article ID 022145, 8 pages, 2011.
[23]
R. E. Somekh, “Calculations of thermalization during the sputter deposition process,” Vacuum, vol. 34, no. 10-11, pp. 987–990, 1984.
[24]
M. Hezam, N. Tabet, and A. Mekki, “Synthesis and characterization of DC magnetron sputtered ZnO thin films under high working pressures,” Thin Solid Films, vol. 518, no. 24, pp. e161–e164, 2010.
[25]
Y. Caglar, M. Caglar, and S. Ilican, “Microstructural, optical and electrical studies on sol gel derived ZnO and ZnO:Al films,” Current Applied Physics, vol. 12, no. 3, pp. 963–968, 2012.
[26]
E. Kim, Z.-T. Jiang, and K. No, “Measurement and calculation of optical band gap of chromium aluminum oxide films,” Japanese Journal of Applied Physics 1, vol. 39, no. 8, pp. 4820–4825, 2000.
[27]
S. M. Rossnagel, I. Yang, and J. J. Cuomo, “Compositional changes during magnetron sputtering of alloys,” Thin Solid Films, vol. 199, no. 1, pp. 59–69, 1991.
[28]
S. Kishimoto, T. Yamada, K. Ikeda, H. Makino, and T. Yamamoto, “Effects of oxygen partial pressure on film growth and electrical properties of undoped ZnO films with thickness below 100 nm,” Surface and Coatings Technology, vol. 201, no. 7, pp. 4000–4003, 2006.
[29]
D. B. Buchholz, D. E. Proffit, M. D. Wisser, T. O. Mason, and R. P. H. Chang, “Electrical and band-gap properties of amorphous zinc-indium-tin oxide thin films,” Progress in Natural Science, vol. 22, no. 1, pp. 1–6, 2012.
[30]
J. Tauc, Amorphous and Liquid Semiconductors, Plenum Press, New York, NY, USA, 1974.
[31]
S. T. Tan, B. J. Chen, X. W. Sun et al., “Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition,” Journal of Applied Physics, vol. 98, no. 1, Article ID 013505, 2005.
[32]
J. Mera, C. Cordoba, A. Gómez, C. Paucar, and O. Morán, “Amorphous phase as possible origin of additional absorption bands in polycrystalline ZnO films,” Journal of Non-Crystalline Solids, vol. 358, no. 23, pp. 3229–3233, 2012.
[33]
X. H. Li, A. P. Huang, M. K. Zhu et al., “Influence of substrate temperature on the orientation and optical properties of sputtered ZnO films,” Materials Letters, vol. 57, no. 30, pp. 4655–4659, 2003.
[34]
T. Hiramatsu, M. Furuta, T. Matsuda, C. Li, and T. Hirao, “Behavior of oxygen in zinc oxide films through thermal annealing and its effect on sheet resistance,” Applied Surface Science, vol. 257, no. 13, pp. 5480–5483, 2011.
[35]
A. Shimizu, S. Chaisitsak, T. Sugiyama, A. Yamada, and M. Konagai, “Zinc-based buffer layer in the Cu(InGa)Se2 thin film solar cells,” Thin Solid Films, vol. 361, pp. 193–197, 2000.