全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Electrostrictive Mechanism of Radiation Self-Action in Nanofluids

DOI: 10.1155/2013/591087

Full-Text   Cite this paper   Add to My Lib

Abstract:

The electrostriction mechanism of beam self-focusing in nanofluids is theoretically investigated. An analytical solution of the diffusion equation, which describes the dynamics of particles in nanofluids, was obtained and studied. Explicit expressions for the nonlinear part of the refractive index and concentration lens focal length are presented. It is shown that there is a limit on the radiation intensity associated with the physical and hydrodynamic characteristics of the phenomena in these processes. 1. Introduction Nanoparticles are being increasingly adopted in new and different areas of science and technology [1–4]. Colloidal suspensions that contain nanoparticles, also known as nanofluids, have found a variety of important applications in modern technologies [5]. For example, magnetic fluids are largely used for polishing optical components [6, 7], suspensions of silica particles in liquid crystals have exhibited extraordinary capabilities for optical storage [8, 9], and artificial media with a high optical nonlinearity were obtained in colloids of submicrometer-size particles in liquids [10–13]. As shown in recent studies [14–21], the liquid-phase environment of dispersed nanoparticles of wide bandgap semiconductors or insulators is very effective for a number of nonlinear optical effects. But the physical mechanisms involved, particularly with nonlinear optical processes in such media, are not entirely clear and require further study. When placed in an electromagnetic field, particles in a microheterogeneous medium, with components that have different refractive indices, are subject to electrostrictive forces that could lead to the appearance of concentration flows [21–23]. Depending on the sign of the polarizability, these microparticles can be pulled in or pushed out of high electric field areas. At the same time that this electrostriction flow phenomenon occurs, thermal diffusion due to the temperature gradient [23] also occurs, but we do not consider thermal effects here. The concentration dynamics of colloidal particles in a periodic light field have been theoretically investigated in [24, 25], and similar problems within the small-perturbation approximation of the concentration were studied in [26, 27]. In this paper, the restrictions of this approximation are removed. Here, using the exact solution of the transformed diffusion equation for particles in the field of a light wave, we explore the dynamics of the particle concentration. The results allow us to find an explicit expression for the nonlinear part of the refractive index and

References

[1]  I. Krasnikov, A. Popov, A. Seteikin, and R. Myllyl?, “Influence of titanium dioxide nanoparticles on skin surface temperature at sunlight irradiation,” Biomedical Optics Express, vol. 2, no. 12, pp. 3278–3283, 2011.
[2]  B. Apter, O. Guilatt, and U. Efron, “Ring-type plasmon resonance in metallic nanoshells,” Applied Optics, vol. 50, no. 28, pp. 5457–5464, 2011.
[3]  V. Krishtop, I. Doronin, and K. Okishev, “Improvement of photon correlation spectroscopy method for measuring nanoparticle size by using attenuated total reflectance,” Optics Express, vol. 20, no. 23, pp. 25693–25699, 2012.
[4]  J. H. Park, C. Park, H. Yu, Y. H. Cho, and Y. K. Park, “Dynamic active wave plate using random nanoparticles,” Optics Express, vol. 20, no. 15, pp. 17010–17016, 2012.
[5]  M. I. Shilomis, “Ferrofluids,” Soviet Physics Uspekhi, vol. 17, no. 2, pp. 153–168, 1974.
[6]  R. E. Rosensweig, Ferrohydrodynamics, Cambridge University Press, Cambridge, UK, 1985.
[7]  J. C. Bacri, A. Cebers, A. Bourdon, G. Demouchy, B. M. Heegaard, and R. Perzynski, “Forced rayleigh experiment in a magnetic fluid,” Physical Review Letters, vol. 74, no. 25, pp. 5032–5035, 1995.
[8]  M. Kreuzer, T. Tschudi, W. H. de Jeu, and R. Eidenschink, “New liquid crystal display with bistability and selective erasure using scattering in filled nematics,” Applied Physics Letters, vol. 62, no. 15, pp. 1712–1714, 1993.
[9]  R. S. Akopyan, N. V. Tabiryan, and T. Tschudi, “Optically induced hydrodynamic reorientation of liquid crystals and its applications for infrared detection and information storage,” Physical Review E, vol. 49, no. 4, pp. 3143–3149, 1994.
[10]  A. J. Palmer, “Nonlinear optics in aerosols,” Optics Letters, vol. 5, no. 2, pp. 54–55, 1980.
[11]  L. R. M. Vicari, “Dynamics of optical nonlinearity in water-in-oil microemulsion,” Japanese Journal of Applied Physics 1, vol. 40, no. 2, pp. 662–665, 2001.
[12]  E. Freysz, M. Afifi, A. Ducasse, B. Pouligny, and J. R. Lalanne, “Giant optical non-linearities of critical micro-emulsions,” Journal de Physique Lettres, vol. 46, pp. 181–187, 1985.
[13]  L. Vicari, “Optical nonlinearity in a film of water in oil microemulsion,” Optical Materials, vol. 18, no. 1, pp. 155–157, 2001.
[14]  O. P. Mikheeva and A. I. Sidorov, “Optical nonlinearity of wide-bandgap semiconductor and insulator nanoparticles in the visible and near-infrared regions of the spectrum,” Technical Physics, vol. 49, no. 6, pp. 739–744, 2004.
[15]  R. El-Ganainy, D. N. Christodoulides, C. Rotschild, and M. Segev, “Soliton dynamics and self-induced transparency in nonlinear nanosuspensions,” Optics Express, vol. 15, no. 16, pp. 10207–10218, 2007.
[16]  Y. N. Kul'chin, A. V. Shcherbakov, V. P. Dzyuba, S. S. Voznesenskiy, and G. T. Mikaelyan, “Nonlinear-optical properties of heterogeneous liquid nanophase composites based on high-energy-gap Al2O3 nanoparticles,” Quantum Electronics, vol. 38, no. 2, pp. 154–158, 2008.
[17]  M. Matuszewski, W. Krolikovski, and Y. Kivshar, “Soliton interactions and transformations in colloidal media,” Physical Review A, vol. 79, no. 2, Article ID 023814, 6 pages, 2009.
[18]  M. Matuszewski, W. Krolikowski, and Y. S. Kivshar, “Spatial solitons and light-induced instabilities in colloidal media,” Optics Express, vol. 16, no. 2, pp. 1371–1376, 2008.
[19]  R. El-Ganainy, D. N. Christodoulides, Z. H. Musslimani, C. Rotschild, and M. Segev, “Optical beam instabilities in nonlinear nanosuspensions,” Optics Letters, vol. 32, no. 21, pp. 3185–3187, 2007.
[20]  C. Conti, G. Ruocco, and S. Trillo, “Optical spatial solitons in soft matter,” Physical Review Letters, vol. 95, no. 18, Article ID 183902, 4 pages, 2005.
[21]  V. I. Ivanov, Thermally Induced Mechanisms Recording Dynamic Holograms, Dalnauka, Vladivostok, Russia, 2006.
[22]  A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers, World Scientific, Singapore, 2006.
[23]  R. T. Schermer, C. C. Olson, J. P. Coleman, and F. Bucholtz, “Laser-induced thermophoresis of individual particles in a viscous liquid,” Optics Express, vol. 19, no. 11, pp. 10571–10586, 2011.
[24]  N. V. Tabiryan and W. Luo, “Soret feedback in thermal diffusion of suspensions,” Physical Review E, vol. 57, no. 4, pp. 4431–4440, 1998.
[25]  R. McGraw and D. Rogovin, “Response of an artificial Kerr medium to moving electromagnetic gratings,” Physical Review A, vol. 35, no. 3, pp. 1181–1191, 1987.
[26]  V. I. Ivanov and A. I. Livashvili, “Electrostriction mechanism of self-radiation in a liquid with nanoparticles,” Bulletin of the Novosibirsk State University Series: Physics, vol. 4, no. 2, pp. 58–60, 2009.
[27]  V. I. Ivanov and A. I. Livashvili, “Self-Action of a Gaussian radiation beam in a layer of a liquid-phase microheterogeneous medium,” Atmospheric and Oceanic Optics, vol. 23, no. 1, pp. 7–8, 2010.
[28]  F. Rezakhanlou, “Pointwise bounds for the solutions of the Smoluchowski equation with diffusion,” http://math.berkeley.edu/~rezakhan/44smolumoment3.pdf.
[29]  A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC Press, Boca Raton, Fla, USA, 2002.
[30]  L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Elsevier Science, Oxford, UK, 1987.
[31]  A. M. Prudnikov, A. Y. Brychkov, and O. I. Marychev, Integrals and Series: Special Functions, Nauka, Moscow, Russia, 1983.
[32]  E. Freysz, W. Claeys, A. Ducasse, and B. Pouligny, “Dynamic grating induced by electrostrictive compression of critical microemulsions,” IEEE Journal of Quantum Electronics, vol. 22, no. 8, pp. 1258–1262, 1986.
[33]  N. I. Koroteev and I. L. Shumay, Physics of High-Power Radiation, Nauka, Moscow, Russia, 1991.
[34]  L. R. M. Vicari, “Pump-probe detection of optical nonlinearity in water-in-oil microemulsion,” Philosophical Magazine B, vol. 82, no. 4, pp. 447–452, 2002.
[35]  L. R. M. Vicari, “Nonlinear optical characterization of cluster dynamic in water in oil microemulsion by a pump probe laser beam technique,” European Physical Journal E, vol. 9, no. 4, pp. 335–340, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133