全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Oxygen Defects Mediated Magnetism of Ni Doped ZnO

DOI: 10.1155/2013/424398

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ni doped ZnO nanoparticles were synthesized by a solution route and annealed in O2, air, and Ar, respectively. X-ray diffraction and X-ray photoelectron spectroscopy measurements show that the samples possess typical wurtzite structure and have no other impurity phases. Magnetization loops for ZnO samples were measured and clearly show typical ferromagnetic saturation behavior. With the defect analysis based on photoluminescence spectroscopy, the effect of defects on the nature and origin of ferromagnetism was investigated. The results suggest that oxygen vacancies, especially single ionized oxygen vacancies, play a crucial role in mediating ferromagnetism in the Ni doped ZnO. 1. Introduction Diluted magnetic oxide semiconductors (DMOSs) have gained much attention recently due to the possibility to control spin and charge simultaneously for future spintronics [1, 2]. These oxide semiconductors with a wide band gap are optically transparent in visible region and important for the development of spin related optoelectronic devices. After the theoretical prediction by Dietl et al. suggesting the existence of room temperature ferromagnetism (FM) in doped ZnO, the system has been extensively studied [3, 4]. Remarkable progress has been made in the realization of transition metal (TM) doped ZnO with Curie temperature (Tc) at or above room temperature (RT). It was also reported that even doping “nonmagnetic” atoms such as Cu or Bi leads to RT FM in ZnO [5, 6]. More recently, FM had been observed in undoped ZnO, which opened an extensive debate on the origin of FM [7, 8]. Therefore, some researches suggested that induced FM is due to oxygen defects in ZnO, not TM ions or secondary phases. Although the origin of FM in TM doped and undoped ZnO has not been fully understood so far, oxygen (or Zn) defects are broadly recognized as an important reason for the FM behavior of doped and undoped ZnO, which is also consistent with our previous work on FM of undoped ZnO [9]. In the present work, we have focused our attention on further research of the role of oxygen (or Zn) defects by investigating the effect of different annealing atmospheres on the FM properties of Ni doped ZnO nanoparticles based on an analysis of photoluminescence (PL) spectroscopy. 2. Experimental 2.1. Preparation of Ni Doped ZnO Nanoparticles zinc acetate (Zn(AC)2·2H2O) and Nickel acetate (Ni(AC)2·4H2O) in the chosen atomic rations were dissolved in 200ml deionized water as the precursor together with 0.01?mol methenamine (C6H12N4, HMT). Then they were mixed under vigorous stirring for 30?min in a

References

[1]  G. A. Prinz, “Magnetoelectronics,” Science, vol. 282, no. 5394, pp. 1660–1663, 1998.
[2]  S. A. Wolf, D. D. Awschalom, R. A. Buhrman et al., “Spintronics: a spin-based electronics vision for the future,” Science, vol. 294, no. 5546, pp. 1488–1495, 2001.
[3]  T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors,” Science, vol. 287, no. 5455, pp. 1019–1022, 2000.
[4]  S. W. Jung, S. J. An, G. C. Yi, et al., “Ferromagnetic properties of Zn1-xMnxO epitaxial thin films,” Applied Physics Letters, vol. 80, article 4561, 2002.
[5]  C. Xu, J. Chun, D. Kim, et al., “Structural characterization and low temperature growth of ferromagnetic Bi-Cu codoped ZnO bicrystal nanowires,” Applied Physics Letters, vol. 91, Article ID 153104, 2007.
[6]  T. S. Herng, S. P. Lau, S. F. Yu, J. S. Chen, and K. S. Teng, “Zn-interstitial-enhanced ferromagnetism in Cu-doped ZnO films,” Journal of Magnetism and Magnetic Materials, vol. 315, no. 2, pp. 107–110, 2007.
[7]  D. Q. Gao, Z. H. Zhang, J. L. Fu, Y. Xu, J. Qi, and D. S. Xue, “Room temperature ferromagnetism of pure ZnO nanoparticles,” Journal of Applied Physics, vol. 105, Article ID 113928, 2009.
[8]  B. B. Straumal, A. A. Mazilkin, S. G. Protasova et al., “Magnetization study of nanograined pure and Mn-doped ZnO films: formation of a ferromagnetic grain-boundary foam,” Physical Review B, vol. 79, no. 20, Article ID 205206, 2009.
[9]  W. Liu, W. Li, Z. Hu, Z. Tang, and X. Tang, “Effect of oxygen defects on ferromagnetic of undoped ZnO,” Journal of Applied Physics, vol. 110, no. 1, Article ID 013901, 2011.
[10]  S. Asbrink, A. Wa?kowska, L. Gerward, J. Staun Olsen, and E. Talik, “High-pressure phase transition and properties of spinel ZnMn2O4,” Physical Review B, vol. 60, no. 18, Article ID 12656, 1999.
[11]  J. H. Li, D. Z. Shen, J. Y. Zhang, et al., “Magnetism origin of Mn-doped ZnO nanoclusters,” Journal of Magnetism and Magnetic Materials, vol. 302, pp. 118–121, 2006.
[12]  Y. Liu, S. H. Yang, Y. L. Zhang, and D. H. Bao, “Influence of annealing temperature on structural, optical and magnetic properties of Mn-doped ZnO thin films prepared by sol-gel method,” Journal of Magnetism and Magnetic Materials, vol. 321, pp. 3406–3410, 2009.
[13]  S. Baek, J. Song, and S. Lim, “Improvement of the optical properties of ZnO nanorods by Fe doping,” Physica B, vol. 399, no. 2, pp. 101–104, 2007.
[14]  C. Y. Lin, W. H. Wang, C.-S. Lee, K. W. Sun, and Y. W. Suen, “Magnetophotoluminescence properties of Co-doped ZnO nanorods,” Applied Physics Letters, vol. 94, Article ID 151909, 2009.
[15]  A. Van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “Luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission,” Journal of Luminescence, vol. 87, pp. 454–456, 2000.
[16]  A. K. Srivastava, M. Deepa, N. Bahadur, and M. S. Goyat, “Influence of Fe doping on nanostructures and photoluminescence of sol-gel derived ZnO,” Materials Chemistry and Physics, vol. 114, no. 1, pp. 194–198, 2009.
[17]  K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Applied Physics Letters, vol. 68, no. 3, pp. 403–405, 1996.
[18]  X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Applied Physics Letters, vol. 78, article 2285, 2001.
[19]  B. Panigrahy, M. Aslam, D. Shanker Misra, M. Ghosh, and D. Bahadur, “Defect-Related Emissions and Magnetization Properties of ZnO Nanorods,” Advanced Functional Materials, vol. 20, pp. 1161–1165, 2010.
[20]  S. A. Studenikin, N. Golego, and M. Cocivera, “Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis,” Journal of Applied Physics, vol. 84, no. 4, pp. 2287–2294, 1998.
[21]  P. Bruno and C. Chappert, “Oscillatory coupling between ferromagnetic layers separated by a nonmagnetic metal spacer,” Physical Review Letters, vol. 67, no. 12, pp. 1602–1605, 1991.
[22]  C. Zener, “Interaction between the d-shells in the transition metals—II. Ferromagnetic compounds of manganese with perovskite structure,” Physical Review, vol. 82, pp. 403–405, 1951.
[23]  P. W. Anderson and H. Hasegawa, “Considerations on double exchange,” Physical Review, vol. 100, no. 2, pp. 675–681, 1955.
[24]  H. Katayama-Yoshida, K. Sato, T. Fukushima et al., “Theory of ferromagnetic semiconductors,” Physica Status Solidi A, vol. 204, no. 1, pp. 15–32, 2007.
[25]  W. S. Yan, Z. H. Sun, and Q. H. Liu, “Zn vacancy induced room-temperature ferromagnetism in Mn-doped ZnO,” Applied Physics Letters, vol. 91, Article ID 062113, 2007.
[26]  C. H. Patterson, “Role of defects in ferromagnetism in Zn1-xCoxO: a hybrid density-functional study,” Physical Review B, vol. 74, Article ID 144432, 2006.
[27]  N. H. Hong, J. Sakai, N. T. Huong, N. Poirot, and A. Ruyter, “Role of defects in tuning ferromagnetism in diluted magnetic oxide thin films,” Physical Review B, vol. 72, no. 4, Article ID 045336, 2005.
[28]  E.-Z. Liu, Y. He, and J. Z. Jiang, “Ferromagnetism induced by defect complex in Co-doped ZnO,” Applied Physics Letters, vol. 93, Article ID 132506, 2008.
[29]  C. W. Zhang and S. S. Yan, “Origin of ferromagnetism of Co-doped SnO2 from first-principles calculations,” Journal of Applied Physics, vol. 106, Article ID 063709, 2009.
[30]  X. L. Wang, C. Y. Luan, and Q. Shao, “Effect of the magnetic order on the room-temperature band-gap of Mn-doped ZnO thin films,” Applied Physics Letters, vol. 102, Article ID 102112, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133