全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Numerical Analysis of Oxygen Adsorption on SnO2 Surface Using Slab Geometry

DOI: 10.1155/2014/957067

Full-Text   Cite this paper   Add to My Lib

Abstract:

Oxidation of thin film SnO2 layer was simulated. In particular, the evolution of depletion layer was investigated by solving Poisson-Boltzmann equation for SnO2 slab geometry grains. On this basis, the surface energy barrier dependence on layer thickness (30–500?nm) was obtained. The effect of the donor mobility (oxygen vacancies in the bulk) and degree of donor ionization on electric potential inside layer with different thicknesses was discussed. Furthermore, the dependence of per-square conductance on temperature (from 400?K to 700?K) has been computed. It was assumed that the bulk oxygen vacancies (donors) are singly or doubly ionized and mobile. The temperature variations in the carrier mobility were also taken into account. 1. Introduction Tin dioxide (SnO2) is a semiconductor oxide with a wide range of applications. The material is being used as a photocatalyst and a gas sensor and in optical devices [1–3]. In all these applications, the surface-related phenomena play a major role and become particularly important for nanomaterials, in which surface-to-volume ratio is much higher [4–6]. Precise numerical model of electrical properties of near-surface layer of SnO2 grains is fundamental for improving sensitivity and selectivity of SnO2 based gas sensors [6]. Shape and size of SnO2 nanograins are considered the most important factors for film conductance. It is caused by chemical reactions which take place on the surface of SnO2 grains. In particular, oxygen adsorption on the surface of SnO2 (ZnO and TiO2) decreases concentration of electrons in the near-surface layer. Depleted region is formed and conductivity of the layer is decreased. At the same time range of working temperatures of the film is raised from 420 to 720?K. Despite much experimental and theoretical research [7–19], the role played by adsorbed oxygen in surface and volume phenomena (surface coverage by oxygen ions, band bending, and distribution of mobile donors) occurring in nanolayers of SnO2 and the influence of these phenomena on conductivity have not yet been explained. Reversible changes in the conductivity of SnO2 layer have been reported, caused by a change in partial pressure of oxygen for sensor work temperature exceeding 500?K. The observed conductivity changes fulfil the exponential relation , where index assumes values from ?0.25 to ?0.5 or for temperatures above 1000?K [12]. Band bending caused by oxygen adsorption was reported by Mizsei and Lantto [13] and Semancik and Cox [14]. Also, X-ray photoelectron spectroscopy (XPS) was used to demonstrate band bending of

References

[1]  J. C. M. Brokken-Zijp, O. L. J. van Asselen, W. E. Kleinjan, R. van de Belt, and G. de With, “Photocatalytic properties of tin oxide and antimony-doped tin oxide nanoparticles,” Journal of Nanotechnology, vol. 2011, Article ID 106254, 15 pages, 2011.
[2]  F. Flitti, A. Far, B. Guo, and A. Bermak, “A robust and low-complexity gas recognition technique for on-chip tin-oxide gas sensor array,” Journal of Sensors, vol. 2008, Article ID 465209, 6 pages, 2008.
[3]  G. Lu, K. L. Huebner, L. E. Ocola, M. Gajdardziska-Josifovska, and J. Chen, “Gas sensors based on tin oxide nanoparticles synthesized from a mini-arc plasma source,” Journal of Nanomaterials, vol. 2006, Article ID 60828, 7 pages, 2006.
[4]  T. S. Rantala, V. Lantto, and T. T. Rantala, “Rate equation simulation of the height of Schottky barriers at the surface of oxidic semiconductors,” Sensors and Actuators B, vol. 13, no. 1–3, pp. 234–237, 1993.
[5]  W. Izydorczyk, B. Adamowicz, M. Miczek, and K. Waczynski, “Computer analysis of an influence of oxygen vacancies on the electronic properties of the SnO2 surface and near-surface region,” Physica Status Solidi (A), vol. 203, no. 9, pp. 2241–2246, 2006.
[6]  J. Pan, H. Shen, and S. Mathur, “One-dimensional SnO2 nanostructures: synthesis and applications,” Journal of Nanotechnology, vol. 2012, Article ID 917320, 12 pages, 2012.
[7]  M. Habgood and N. Harrison, “An ab initio study of oxygen adsorption on tin dioxide,” Surface Science, vol. 602, no. 5, pp. 1072–1079, 2008.
[8]  S. C. Chang, “Sensing mechanisms of thin-film tin oxide,” in Proceedings of the International Meeting on Chemical Sensors, pp. 78–83, Fukuoka, Japan, September 1983.
[9]  S. R. Morrison, The Chemical Physics of Surfaces, Plenum Press, New York, NY, USA, 1997.
[10]  V. V. Kissine, V. V. Sysoev, and S. A. Voroshilov, “Conductivity of SnO2 thin films in the presence of surface adsorbed species,” Sensors and Actuators B, vol. 79, no. 2-3, pp. 163–170, 2001.
[11]  V. Lantto, P. Romppainen, and S. Lepp?vuori, “Response studies of some semiconductor gas sensors under different experimental conditions,” Sensors and Actuators, vol. 15, no. 4, pp. 347–357, 1988.
[12]  K. D. Schierbaum, H. D. Wiemh?fer, and W. G?pel, “Defect structure and sensing mechanism of SnO2 gas sensors: comparative electrical and spectroscopic studies,” Solid State Ionics, vol. 28–30, part 2, pp. 1631–1636, 1988.
[13]  J. Mizsei and V. Lantto, “Simultaneous response of work function and resistivity of some SnO2-based samples to H2 and H2S,” Sensors and Actuators B, vol. 4, no. 1-2, pp. 163–168, 1991.
[14]  S. Semancik and D. F. Cox, “Fundamental characterization of clean and gas-dosed tin oxide,” Sensors and Actuators, vol. 12, no. 2, pp. 101–106, 1987.
[15]  T. G. G. Maffes, G. T. Owen, M. W. Penny et al., “Nano-crystalline SnO2 gas sensor response to O2 and CH4 at elevated temperature investigated by XPS,” Surface Science, vol. 520, no. 1-2, pp. 29–34, 2002.
[16]  B. Slater, C. R. A. Catlow, D. E. Williams, and A. M. Stoneham, “Dissociation of O2 on the reduced SnO2 (110) surface,” Chemical Communications, no. 14, pp. 1235–1236, 2000.
[17]  J. Oviedo and M. J. Gillan, “First-principles study of the interaction of oxygen with the SnO2 (110) surface,” Surface Science, vol. 490, no. 3, pp. 221–236, 2001.
[18]  T. S. Rantala and V. Lantto, “Some effects of mobile donors on electron trapping at semiconductor surfaces,” Surface Science, vol. 352–354, pp. 765–770, 1996.
[19]  U. Pulkkinen, T. T. Rantala, T. S. Rantala, and V. Lantto, “Kinetic Monte Carlo simulation of oxygen exchange of SnO2 surface,” Journal of Molecular Catalysis A, vol. 166, no. 1, pp. 15–21, 2001.
[20]  W. Izydorczyk and B. Adamowicz, “Computer analysis of oxygen adsorption at SnO2 thin films,” Optica Applicata, vol. 37, no. 4, pp. 377–386, 2007.
[21]  S. R. Morrison, “Mechanism of semiconductor gas sensor operation,” Sensors and Actuators, vol. 11, no. 3, pp. 283–287, 1987.
[22]  N. Barsan and U. Weimar, “Conduction model of metal oxide gas sensors,” Journal of Electroceramics, vol. 7, no. 3, pp. 143–167, 2001.
[23]  N. Murakami, K. Tanaka, K. Sasaki, and K. Ihokura, “Influence of sintering temperature on characteristics of tin oxide combustion monitor sensors,” in Proceedings of the International Meeting on Chemical Sensors, pp. 165–170, Fukuoka, Japan, September 1983.
[24]  R. Summitt and N. F. Borrelli, “Temperature dependence of the ultraviolet absorption edges in SnO2,” Journal of Applied Physics, vol. 37, no. 5, p. 2200, 1966.
[25]  C. G. Fonstad and R. H. Rediker, “Electrical properties of high-quality stannic oxide crystals,” Journal of Applied Physics, vol. 42, no. 7, pp. 2911–2918, 1971.
[26]  S. C. Chang, “Oxygen chemisorption on tin oxide: correlation between electrical conductivity and EPR measurements,” Journal of Vacuum Science & Technology, vol. 17, no. 1, pp. 366–369, 1980.
[27]  S. I. Rembeza, E. S. Rembeza, T. V. Svistova, and O. I. Borsiakova, “Electrical resistivity and gas response mechanisms of nanocrystalline SnO2 films in a wide temperature range,” Physica Status Solidi (A), vol. 179, no. 1, pp. 147–152, 2000.
[28]  R. Sanjines, F. Lévy, V. Demarne, and A. Grisel, “Some aspects of the interaction of oxygen with polycrystalline SnOx thin films,” Sensors and Actuators B, vol. 1, no. 1–6, pp. 176–182, 1990.
[29]  F. Cosandey, G. Skandan, and A. Singhal, “Materials and processing issues in nanostructured semiconductor gas sensors,” JOM-e, vol. 52, no. 10, pp. 1–6, 2000.
[30]  B. Adamowicz, W. Izydorczyk, J. Izydorczyk, A. Klimasek, W. Jakubik, and J. Zywicki, “Response to oxygen and chemical properties of SnO2 thin-film gas sensors,” Vacuum, vol. 82, no. 10, pp. 966–970, 2008.
[31]  Th. Becker, S. Ahlers, Ch. B.-V. Braunmuhl, G. Müller, and O. Kiesewetter, “Gas sensing properties of thin- and thick-film tin-oxide materials,” Sensors and Actuators B, vol. 77, no. 1-2, pp. 55–61, 2001.
[32]  V. Lantto and V. Golovanov, “A comparison of conductance behaviour between SnO2 and CdS gas-sensitive films,” Sensors and Actuators B, vol. 25, no. 1–3, pp. 614–618, 1995.
[33]  L. Yu. Kupriyanow, Semiconductor Sensors in Physico-Chemical Studies, Elsevier, Amsterdam, The Netherlands, 1996.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133