全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Microscopic Rate Constants of Crystal Growth from Molecular Dynamic Simulations Combined with Metadynamics

DOI: 10.1155/2012/135172

Full-Text   Cite this paper   Add to My Lib

Abstract:

Atomistic simulation of crystal growth can be decomposed into two steps: the determination of the microscopic rate constants and a mesoscopic kinetic Monte Carlo simulation. We proposed a method to determine kinetic rate constants of crystal growth. We performed classical molecular dynamics on the equilibrium liquid/crystal interface of argon. Metadynamics was used to explore the free energy surface of crystal growth. A crystalline atom was selected at the interface, and it was displaced to the liquid phase by adding repulsive Gaussian potentials. The activation free energy of this process was calculated as the maximal potential energy density of the Gaussian potentials. We calculated the rate constants at different interfacial structures using the transition state theory. In order to mimic real crystallization, we applied a temperature difference in the calculations of the two opposite rate constants, and they were applied in kinetic Monte Carlo simulation. The novelty of our technique is that it can be used for slow crystallization processes, while the simple following of trajectories can be applied only for fast reactions. Our method is a possibility for determination of elementary rate constants of crystal growth that seems to be necessary for the long-time goal of computer-aided crystal design. 1. Introduction The macroscopic shape of a crystal reflects the net effect of complex processes. The number of the important processes and the dependence of the results on many factors mean a large task for theoretical description and computational modelling. The most important factors are the properties of the solute and the solvent, the temperature, the pressure, the impurities, and the form of the possible seeds. Crystallization is usually divided into two steps, the formation of the seeds and the growth of the crystal [1]. There are numerous ways to model both steps. A possible grouping of the methods is according to the size scale of the methods terming as microscopic, mesoscopic, and macroscopic ones. In detailed modelling, we can use quantum mechanics where the electrons of the system are explicitly included. If the effect of the electrons is averaged in classical mechanical interaction potentials among the atoms or molecules, we can use atomic/molecular modelling with classical mechanics. We can use mesoscopic lattice models, where the atoms or molecules occupy lattice points defined in advance. We may even simplify the model up to limit, where the model includes only the information, that a lattice point is occupied or it is vacant. If the basics of

References

[1]  H. Jónsson, “Theoretical studies of atomic-scale processes relevant to crystal growth,” Annual Review of Physical Chemistry, vol. 51, pp. 623–653, 2000.
[2]  S. X. M. Boerrigter, G. P. H. Josten, J. Van De Streek et al., “MONTY: Monte Carlo crystal growth on any crystal structure in any crystallographic orientation; Application to fats,” Journal of Physical Chemistry A, vol. 108, no. 27, pp. 5894–5902, 2004.
[3]  K. R. Elder, K. Katakowski, M. Haataja, and M. Grant, “Modeling elasticity in crystal growth,” Physical Review Letters, vol. 88, no. 24, Article ID 245701, 4 pages, 2002.
[4]  G. I. Tóth, G. Tegze, T. Pusztai, G. Tóth, and L. Gránásy, “Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D,” Journal of Physics, vol. 22, no. 36, Article ID 364101, 2010.
[5]  S. Piana and J. D. Gale, “Interfaces between a saturated aqueous urea solution and crystalline urea: a molecular dynamics study,” Journal of the American Chemical Society, vol. 98, no. 6, pp. 1674–1681, 1994.
[6]  S. Piana, M. Reyhani, and J. D. Gale, “Simulating micrometre-scale crystal growth from solution,” Nature, vol. 438, no. 7064, pp. 70–73, 2005.
[7]  S. Piana and J. D. Gale, “Three-dimensional kinetic Monte Carlo simulation of crystal growth from solution,” Journal of Crystal Growth, vol. 294, no. 1, pp. 46–52, 2006.
[8]  D. T. Gillespie, “A general method for numerically simulating the stochastic time evolution of coupled chemical reactions,” Journal of Computational Physics, vol. 22, no. 4, pp. 403–434, 1976.
[9]  G. H. Gilmer, “Computer models of crystal growth,” Science, vol. 208, no. 4442, p. 355, 1980.
[10]  A. F. Voter, “Classically exact overlayer dynamics: Diffusion of rhodium clusters on Rh(100),” Physical Review B, vol. 34, no. 10, pp. 6819–6829, 1986.
[11]  K. A. Fichthorn and W. H. Weinberg, “Theoretical foundations of dynamical Monte Carlo simulations,” The Journal of Chemical Physics, vol. 95, no. 2, pp. 1090–1096, 1991.
[12]  G. Tóth, “Microscopic kinetic data on crystal growth from macroscopic morphology,” Crystal Growth & Design, vol. 8, no. 11, pp. 3959–3964, 2008.
[13]  L. M. Liu, A. Laio, and A. Michaelides, “Initial stages of salt crystal dissolution determined with ab initio molecular dynamics,” Physical Chemistry Chemical Physics, vol. 13, no. 29, pp. 13162–13166, 2011.
[14]  A. G. Stack, P. Raiteri, and J. D. Gale, “Accurate rates of the complex mechanisms for growth and dissolution of minerals using a combination of rare-event theories,” Journal of the American Chemical Society, vol. 134, no. 1, pp. 11–14, 2012.
[15]  A. Laio and M. Parrinello, “Escaping free-energy minima,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 20, pp. 12562–12566, 2002.
[16]  W. C. Swope and H. C. Andersen, “106-particle molecular-dynamics study of homogeneous nucleation of crystals in a supercooled atomic liquid,” Physical Review B, vol. 41, no. 10, pp. 7042–7054, 1990.
[17]  P. R. Ten Wolde, M. J. Ruiz-Montero, and D. Frenkel, “Numerical evidence for bcc ordering at the surface of a critical fcc nucleus,” Physical Review Letters, vol. 75, no. 14, pp. 2714–2717, 1995.
[18]  P. R. ten Wolde, M. J. Ruiz-Montero, and D. Frenkel, “Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling,” Journal of Chemical Physics, vol. 104, no. 24, pp. 9932–9947, 1996.
[19]  D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic Press, London, UK, 1996.
[20]  M. P. Allen and J. d. Tildesley, Computer Simmulation of Liquids, Oxford University Press, London, UK, 1991.
[21]  J. P. Hansen and L. Verlet, “Phase transitions of the Lennard-Jones system,” Physical Review, vol. 184, no. 1, pp. 151–161, 1969.
[22]  A. Laio and F. L. Gervasio, “Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science,” Reports on Progress in Physics, vol. 72, no. 12, Article ID 126601, 2008.
[23]  G. Bussi, A. Laio, and M. Parrinello, “Equilibrium free energies from nonequilibrium metadynamics,” Physical Review Letters, vol. 96, no. 9, Article ID 090601, 2006.
[24]  A Barducci, G. Bussi, and M. Parrinello, “Well-tempered metadynamics: a smoothly converging and tunable free-energy method,” Physical Review Letters, vol. 100, no. 2, Article ID 020603, 2008.
[25]  W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in Fortran, Cambridge University Press, Cambridge, UK, 1992.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133