In prestressed concrete structures, the evaluation of the safety level is generally carried out by separating the bending moment strength and the shear force capacity. Actually interaction between bending moment (M) and shear force (V) can have significant consequences on evaluations in service life, especially when the ultimate limit state (ULS) is considered. In this paper, the M-V interaction is addressed for prestressed concrete girders, in the cases of both bonded and unbonded prestressing tendons. It can be demonstrated, by drawing the interaction domains (M-V), that a significant reduction of the safety level has to be considered when shear force is evaluated together with bending moment on the ULS of the cross-section, especially for external prestressing in concrete T-shaped or box sections of bridge girders. Interaction domains allow designers to evaluate and optimize reinforcement ratios, geometric properties of the beam, and effects of shear on the ultimate state. An analytical model, based on the stress field theory, is developed and proposed in this paper. A numerical example is developed and interaction domains are given for an example of a box section with variation in reinforcement ratio and tendon slope. A validation of the presented model is given, by comparing experimental data in the literature with results found using the proposed analytical approach. 1. Introduction In the last few decades many concrete structures with external prestressing have appeared, especially in the field of small and medium span bridge girders. Unbonded prestressing is a technology which is rapidly spreading for new constructions and for the rehabilitation and retrofitting of existing ones [1, 2]; many interventions with external prestressing have been carried out for strengthening existing deteriorated bridges [3] and this technique provides an efficient and cheap solution for a wide range of bridge typologies. On the other hand, suitable conceptual tools which clarify the behaviour of these structures have not been consolidated, especially for ultimate behaviour under shear and shear-bending moment interaction, although valuable contributions have been made in this direction [4]. Moreover, for reinforced concrete (RC) structures it is known that the actual behaviour near collapse is greatly influenced by the interaction between shear, bending moment, and axial force [5, 6]. Bairan Garcia and Marì Bernat [7–9] studied the shear-bending-torsion interaction in structural concrete members by a nonlinear approach and a coupled model for section analysis
References
[1]
F. T. K. Au and J. S. Du, “Prediction of ultimate stress in unbonded prestressed tendons,” Magazine of Concrete Research, vol. 56, no. 1, pp. 1–11, 2004.
[2]
A. E. Naaman, N. Burns, C. French, W. L. Gamble, and A. H. Mattock, “Stresses in unbonded prestressing tendons at ultimate: recommendation,” ACI Structural Journal, vol. 99, no. 4, pp. 518–529, 2002.
[3]
M. Moravcik and I. Dreveny, “Strengthening and verification of the prestressed road bridge using external prestressing,” in Concrete Repair, Rehabilitation and Retrofitting II, M. G. Alexander, H.-D. Beushausen, F. Dehn, and P. Moyo, Eds., pp. 1077–1080, Taylor & Francis, London, UK, 2009.
[4]
G. Fanti and G. Mancini, “Shear-prestressing interaction in ultimate limit state design,” in Developments in Short and Medium Span Bridge Engineering, Halifax, UK, 1994.
[5]
P. P. Rossi and A. Recupero, “Ultimate strength of reinforced concrete circular members subjected to axial force, bending moment and shear force,” Journal of Structural Engineering ASCE, vol. 139, no. 6, pp. 915–928, 2013.
[6]
A. Recupero, A. D'Aveni, and A. Ghersi, “Bending moment-shear force interaction domains for prestressed concrete beams,” Journal of Structural Engineering, vol. 131, no. 9, pp. 1413–1421, 2005.
[7]
J. M. Bairan Garcia and A. R. Mari Bernat, “Coupled model for the non-linear analysis of anisotropic sections subjected to general 3D loading. Part 1: theoretical formulation,” Computers and Structures, vol. 84, no. 31-32, pp. 2254–2263, 2006.
[8]
J. M. Bairan Garcia and A. R. Mari, “Coupled model for the nonlinear analysis of sections made of anisotropic materials, subjected to general 3D loading. Part 2: implementation and validation,” Computers and Structures, vol. 84, no. 31-32, pp. 2264–2276, 2006.
[9]
J. M. Bairan Garcia and A. R. Mari Bernat, “Shear-bending-torsion interaction in structural concrete members: a nonlinear coupled sectional approach,” Archives of Computational Methods in Engineering, vol. 14, no. 3, pp. 249–278, 2007.
[10]
K. N. Rahal, “Combined torsion and bending in reinforced and prestressed concrete beams using simplified method for combined stress-resultants,” ACI Structural Journal, vol. 104, no. 4, pp. 402–411, 2007.
[11]
G. Bertagnoli and G. Mancini, “Failure analysis of hollow-core slabs tested in shear,” Structural Concrete, vol. 10, no. 3, pp. 139–152, 2009.
[12]
G. Russo, G. Zingone, and G. Puleri, “Flexure-shear interaction model for longitudinally reinforced beams,” ACI Structural Journal, vol. 88, no. 1, pp. 60–68, 1991.
[13]
G. Russo and G. Puleri, “Stirrup effectiveness in reinforced concrete beams under flexure and shear,” ACI Structural Journal, vol. 94, no. 3, pp. 227–238, 1997.
[14]
A. Recupero, A. D'Aveni, and A. Ghersi, “N-M-V interaction domains for box and I-shaped reinforced concrete members,” ACI Structural Journal, vol. 100, no. 1, pp. 113–119, 2003.
[15]
P. E. Regan and H. Rezai-Jorabi, “The Shear resistance of reinforced concrete I-beams,” in Studi e Ricerche, Politecnico di Milano, vol. 9, pp. 305–321, Milan, Italy, 1987.
[16]
J. R. Robinson and J. M. Demorieux, “Essais de Poutres en double té en Béton Armé,” Annales de l'Institut Technique du Batiment et des Travaux Publics, vol. 153, pp. 66–91, 1976.
[17]
K.-H. Tan and C.-K. Ng, “Effect of shear in externally prestressed beams,” ACI Structural Journal, vol. 95, no. 2, pp. 116–128, 1998.
[18]
M. W. Braestrup, M. P. Nielsen, and F. Bach, “Rational analysis of Shear in reinforced concrete beams,” in Proceedings of the International Association for Bridge and Structural Engineering (IABSE '78), 1978.
ACI, “ACI 445R-99 Recent Approaches to Shear Design of Structural Concrete,” Reported by Joint ACI-ASCE Committee 445. Manual of concrete practice, pp. 1-55, 1999.
[21]
P. Colajanni, A. Recupero, and N. Spinella, “Generalization of shear truss model to the case of SFRC beams with stirrups,” Computers & Concrete, vol. 9, no. 3, pp. 227–244, 2012.
[22]
N. Spinella, P. Colajanni, and A. Recupero, “Simple plastic model for shear critical SFRC beams,” Journal of Structural Engineering, vol. 136, no. 4, pp. 390–400, 2010.
[23]
G. Bertagnoli, G. Mancini, A. Recupero, and N. Spinella, “Rotating compression field model for reinforced concrete beams under prevalent shear actions,” Structural Concrete, vol. 12, no. 3, pp. 178–186, 2011.
[24]
G. Bertagnoli and V. I. Carbone, “A finite element formulation for concrete structures in plane stress,” Structural Concrete, vol. 9, no. 2, pp. 87–99, 2008.
[25]
A. Perez and H. Corres, “Influence of construction sequence in prestressed concrete bridges,” in Proceedings of the 5th International RILEM Symposium on Creep and Shrinkage of Concrete, Barcelona, Spain, 1993.
[26]
M. F. Granata and M. Arici, “Serviceability of segmental concrete arch-frame bridges built by cantilevering,” Bridge Structures, vol. 9, no. 1, pp. 21–36, 2013.
[27]
M. Arici and M. F. Granata, “Analysis of curved incrementally launched box concrete bridges using Transfer Matrix Method,” Bridge Structures, vol. 3, no. 3-4, pp. 165–181, 2007.
[28]
M. F. Granata, P. Margiotta, and M. Arici, “A parametric study of curved incrementally launched bridges,” Engineering Structures, vol. 49, pp. 373–384, 2013.
[29]
M. F. Granata, P. Margiotta, and M. Arici, “A simplified procedure for evaluating the effects of creep and shrinkage on prestressed concrete girder bridges and the application of European and North American prediction models,” Journal of Bridge Engineering ASCE, vol. 18, no. 12, pp. 1281–1297, 2013.
[30]
M. F. Granata, P. Margiotta, A. Recupero, and M. Arici, “Partial elastic scheme method in cantilever construction of concrete arch bridges,” Journal of Bridge Engineering ASCE, vol. 18, no. 7, pp. 663–672, 2013.
[31]
M. F. Granata, P. Margiotta, A. Recupero, and M. Arici, “Concrete arch bridges built by lattice cantilevers,” Structural Engineering and Mechanics, vol. 45, no. 5, pp. 703–722, 2013.
[32]
M. W. Braestrup, “Structural concrete beam Shear—still a riddle?” ACI Special Publication, vol. 15, pp. 327–344, 2009.
[33]
CEB, Bulletin d’Information n° 213/214—CEB-FIP Model code 1990, Thomas Telford, London, UK, 1993.
[34]
CEN, EN 1992-1-1 Eurocode 2—Design of Concrete Structures—Part 1.1: General Rules and Rules for Buildings, 2005.