全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Self-Compacting Concrete Incorporating Micro- and Acrylic Polymer

DOI: 10.1155/2014/652362

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study examined the effects of using acrylic polymer and micro-SiO2 in self-compacting concrete (SCC). Using these materials in SCC improves the characteristics of the concrete. Self-compacting samples with 1-2% of a polymer and 10% micro-SiO2 were made. In all cases, compressive strength, water absorption, and self-compacting tests were done. The results show that adding acrylic polymer and micro-SiO2 does not have a significant negative effect on the mechanical properties of self-compacting concrete. In addition using these materials leads to improving them. 1. Introduction Concrete is the world’s widely used construction material because of its properties. By increasing the use of engineers, SCC [1–6] was developed in Japan. One of the biggest differences between SCC and usual concrete is their incorporation of materials [7, 8]. SCC is considered to be a concrete that can be placed and compacted with no vibration and segregation [9–12]. Because cement, the most important part of the concrete, is very expensive, using SCC is very economical. Polymer concrete (PC) is a composite material which is formed by combining mineral aggregates or monomers [13]. Because of its high strength properties, rapid setting, and ability to resist a corrosive environment, PC is increasingly being used as an alternate to cement concrete in construction, highway pavements, waste water pipes, and other places. Polymers are mostly incorporated in the concrete mixed as emulsions of polymer in water (latexes), but dry polymer powders or liquid monomers or resins may be used [14]. The nature of microstructural modification and void filling and bridging of cracks that occurs when polymer formulations are incorporated in cement systems is such that polymers change the pore structure [15]. The polymer used in this paper is the polymerization product of acrylic acid. This polymer is based on acrylic resins. It has the ability to mix easily at any mortar and is consistent with a variety of acrylic paints. Micro-SiO2 had been used as an addition to SCC for 10 percent by weight of cement, although the normal proportion is 5 to 15 percent. With an addition of 10 percent, the potential exists for very strong, brittle concrete. High replacement rates will require the use of a high range water reducer. When it is used in concrete, it acts as a filler and as a cementitious material. The small microsilica particles fill spaces between cement particles and between the cement past matrix and aggregate particles. Microsilica also combines with calcium hydroxide to form additional calcium

References

[1]  M. Liu, “Self-compacting concrete with different levels of pulverized fuel ash,” Construction and Building Materials, vol. 24, no. 7, pp. 1245–1252, 2010.
[2]  A. Leemann, R. Loser, and B. Münch, “Influence of cement type on ITZ porosity and chloride resistance of self-compacting concrete,” Cement and Concrete Composites, vol. 32, no. 2, pp. 116–120, 2010.
[3]  S. C. Kou and C. S. Poon, “Properties of self-compacting concrete prepared with coarse and fine recycled concrete aggregates,” Cement and Concrete Composites, vol. 31, no. 9, pp. 622–627, 2009.
[4]  F. M. A. Filho, B. E. Barragán, J. R. Casas, and A. L. H. C. El Debs, “Hardened properties of self-compacting concrete—a statistical approach,” Construction and Building Materials, vol. 24, no. 9, pp. 1608–1615, 2010.
[5]  O. Boukendakdji, S. Kenai, E. H. Kadri, and F. Rouis, “Effect of slag on the rheology of fresh self-compacted concrete,” Construction and Building Materials, vol. 23, no. 7, pp. 2593–2598, 2009.
[6]  B. Craeye, D. G. Schutter, B. Desmet et al., “Effect of mineral filler type on autogenous shrinkage of self-compacting concrete,” Cement and Concrete Research, vol. 40, no. 6, pp. 908–913, 2010.
[7]  G. Ye, X. Liu, D. G. Schutter, A.-M. Poppe, and L. Taerwe, “Influence of limestone powder used as filler in SCC on hydration and microstructure of cement pastes,” Cement and Concrete Composites, vol. 29, no. 2, pp. 94–102, 2007.
[8]  A. Heidari and D. Tavakoli, “A study of the mechanical properties of ground ceramic powder concrete incorporating nano-SiO2 particles,” Construction and Building Materials, vol. 38, Article ID 10.1016/j.conbuildmat.2012.07.110, pp. 255–264, 2013.
[9]  P. Bartos, “Self-compacting concrete,” Concrete, vol. 33, no. 4, pp. 9–14, 1993.
[10]  H. M. Okamura and M. Ouchi, “Self-compacting concrete,” Journal of Advances Concrete Technology, vol. 1, no. 1, pp. 5–15, 2003.
[11]  M. Collepardi, S. Collepardi, O. Olagat, and J. Troli, “Laboratory-test and filled-experience SCC’s,” in Proceeding of the 3rd International Symposium on Self-compacting Concrete, pp. 904–912, Reykjavik, Iceland, August 2003.
[12]  N. Bouzoubaa and M. Lachemi, “Self-compacting concrete incorporating high volumes of class F fly ash-preliminary results,” Cement and Concrete Research, vol. 31, no. 3, pp. 413–420, 2001.
[13]  S. Mebarkia and C. Vipulanandan, “Mechanical properties and water diffusion in polyester polymer concrete,” Journal of Engineering Mechanics, vol. 121, no. 12, pp. 1359–1365, 1995.
[14]  N. Belie and J. Monteny, “Resistance of concrete containing styrol acrylic acid ester latex to acids occurring on floors for livestock housing,” Cement and Concrete Research, vol. 28, no. 11, pp. 1621–1628, 1998.
[15]  M. U. K. Afridi, Y. Ohama, K. Demura, and M. Z. Iqbal, “Development of polymer films by the coalescence of polymer particles in powdered and aqueous polymer-modified mortars,” Cement and Concrete Research, vol. 33, no. 11, pp. 1715–1721, 2003.
[16]  H. A. Mohamed, “Effect of fly ash and silica fume on compressive strength of self-compacting concrete under different curing conditions,” Ain Shams Engineering Journal, vol. 2, no. 2, pp. 79–86, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133