Immobilization of anti-CD34 antibody is proven to be an effective strategy to accelerate reendothelialization and thereby lower the thrombosis of blood contacting grafts. To realize highly efficient immobilization of anti-CD34 antibody, an argon cold plasma-mediated graft process was developed with PEG as spacer arm in this study. In this process, the 316L stainless steel (316LSS) model substrate was first coated with ethylene vinyl acetate copolymer (EVA) followed by argon plasma treatment and PEG400 modification (EVA-PEG). The EVA-PEG was further ignited by argon plasma and then the anti-CD34 antibody was immobilized. XPS measurement indicated the successful immobilization of the EVA and the anti-CD34 antibody molecules. Compared with the anti-CD34 antibody anchored without PEG, the immobilized EVA-PEG-anti-CD34 antibody exhibited better capturing efficiency (increase about 1-fold) of specific antigen. Consequently, the endothelial cell attachment (before 12?h) and proliferation (1~4 days) were significantly improved. Further study showed that this EVA-PEG-anti-CD34 coating could reduce blood coagulation. Therefore, this cold plasma-mediated graft process with PEG spacer arm developed here is a promising strategy to immobilize antibody with higher bioactivity for rapid reendothelialization of the cardiovascular implants. 1. Introduction Coronary artery stenting has made tremendous success in the treatment of coronary artery disease [1–3]. In particular, the drug-eluting stents, which incorporate drugs that can effectively reduce the proliferation and migration of smooth muscle, have been developed and several clinically proven products (Cypher, Taxus, etc.) are currently available on market [2, 3]. Unfortunately, the Late Angiographic Stent Thrombosis (LAST) continues to be a major challenge, which often leads to the failure of stent implantation in clinic. It is well-accepted that the poor endothelium-paving, either due to the injury to and loss of the endothelium or the retard endothelialization in/after implantation, is the important contributor to this thrombosis [4–6]. Therefore, from this viewpoint, accelerating reendothelialization or relining at denudated regions after implantation should be the most effective strategy to improve the clinic patency rate, particularly in small and medium diameter vascular prostheses. To achieve rapid reendothelialization, many different approaches have been developed in the past few years, including active endothelial cell coating [7, 8] and EC-compatible layer [9]. Among them, anti-CD34 antibody-grafted stent,
References
[1]
L. Mauri, W.-H. Hsieh, J. M. Massaro, K. K. L. Ho, R. D'Agostino, and D. E. Cutlip, “Stent thrombosis in randomized clinical trials of drug-eluting stents,” New England Journal of Medicine, vol. 356, no. 10, pp. 1020–1029, 2007.
[2]
M. Yin, Y. Yuan, C. S. Liu, and J. Wang, “Development of mussel adhesive polypeptide mimics coating for in-situ inducing re-endothelialization of intravascular stent device,” Biomaterials, vol. 30, no. 14, pp. 2764–2773, 2009.
[3]
Mass High Tech, “Boston Scientific gets FDA OK for two Taxus stent uses,” 2008, http://www.masshightech.com/stories/2008/09/22/daily47.
[4]
S. Meng, Z. Liu, L. Shen et al., “The effect of a layer-by-layer chitosan-heparin coating on the endothelialization and coagulation properties of a coronary stent system,” Biomaterials, vol. 30, no. 12, pp. 2276–2283, 2009.
[5]
A. V. Finn, F. D. Kolodgie, J. Harnek et al., “Differential response of delayed healing and persistent inflammation at sites of overlapping sirolimus- or paclitaxel-eluting stents,” Circulation, vol. 112, no. 2, pp. 270–278, 2005.
[6]
Q. Lin, X. Ding, F. Qiu, X. Song, G. Fu, and J. Ji, “In situ endothelialization of intravascular stents coated with an anti-CD34 antibody functionalized heparin-collagen multilayer,” Biomaterials, vol. 31, no. 14, pp. 4017–4025, 2010.
[7]
M. Avci-Adali, A. Paul, G. Ziemer, and H. P. Wendel, “New strategies for in vivo tissue engineering by mimicry of homing factors for self-endothelialisation of blood contacting materials,” Biomaterials, vol. 29, no. 29, pp. 3936–3945, 2008.
[8]
B. H. Walpoth and G. L. Bowlin, “The daunting quest for a small diameter vascular graft,” Expert Review of Medical Devices, vol. 2, no. 6, pp. 647–651, 2005.
[9]
M. Yin, Y. Yuan, C. Liu, and J. Wang, “Development of mussel adhesive polypeptide mimics coating for in-situ inducing re-endothelialization of intravascular stent devices,” Biomaterials, vol. 30, no. 14, pp. 2764–2773, 2009.
[10]
Y. Yuan, M. Yin, J. Qian, and C. Liu, “Site-directed immobilization of antibodies onto blood contacting grafts for enhanced endothelial cell adhesion and proliferation,” Soft Matter, vol. 7, no. 16, pp. 7207–7216, 2011.
[11]
J. M. Lee, W. S. Choe, B. K. Kim et al., “Comparison of endothelialization and neointimal formation with stents coatedwith antibodies against CD34 and vascular endothelial-cadherin,” Biomaterials, vol. 33, no. 35, pp. 8917–8927, 2012.
[12]
F. Yang, S. C. Feng, X. J. Pang et al., “Combination coating of chitosan and anti-CD34 antibody applied on sirolimus-eluting stents can promote endothelialization while reducing neointimal formation,” BMC Cardiovascular Disorders, vol. 12, article 96, 2012.
[13]
J. Aoki, P. W. Serruys, H. Van Beusekom et al., “Endothelial progenitor cell capture by stents coated with antibody against CD34: the HEALING-FIM (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First in Man) registry,” Journal of the American College of Cardiology, vol. 45, no. 10, pp. 1574–1579, 2005.
[14]
M. Yin, Y. Yuan, C. Liu, and J. Wang, “Combinatorial coating of adhesive polypeptide and anti-CD34 antibody for improved endothelial cell adhesion and proliferation,” Journal of Materials Science: Materials in Medicine, vol. 20, no. 7, pp. 1513–1523, 2009.
[15]
J. I. Rotmans, J. M. M. Heyligers, H. J. M. Verhagen et al., “In vivo cell seeding with anti-CD34 antibodies successfully accelerates endothelialization but stimulates intimal hyperplasia in porcine arteriovenous expanded polytetrafluoroethylene grafts,” Circulation, vol. 112, no. 1, pp. 12–18, 2005.
[16]
J. Chen, J. Cao, J. Wang et al., “Biofunctionalization of titanium with PEG and anti-CD34 for hemocompatibility and stimulated endothelialization,” Journal of Colloid and Interface Science, vol. 368, no. 1, pp. 636–647, 2012.
[17]
S. Kalachandra, L. Dongming, and S. Offenbacher, “Controlled drug release for oral condition by a novel device based on ethylene vinyl acetate (EVA) copolymer,” Journal of Materials Science: Materials in Medicine, vol. 13, no. 1, pp. 53–58, 2002.
[18]
Q. Guo, S. Guo, and Z. Wang, “A type of esophageal stent coating composed of one 5-fluorouracil-containing EVA layer and one drug-free protective layer: in vitro release, permeation and mechanical properties,” Journal of Controlled Release, vol. 118, no. 3, pp. 318–324, 2007.
[19]
Y. Yuan, C. Liu, and M. Yin, “Plasma polymerized n-butyl methacrylate coating with potential for re-endothelialization of intravascular stent devices,” Journal of Materials Science: Materials in Medicine, vol. 19, no. 5, pp. 2187–2196, 2008.
[20]
H. Wang, Y. Liu, Y. Yang, T. Deng, G. Shen, and R. Yu, “A protein A-based orientation-controlled immobilization strategy for antibodies using nanometer-sized gold particles and plasma-polymerized film,” Analytical Biochemistry, vol. 324, no. 2, pp. 219–226, 2004.
[21]
Y. B. J. Aldenhoff, R. Blezer, T. Lindhout, and L. H. Koole, “Photo-immobilization of dipyridamole (Persantin) at the surface of polyurethane biomaterials: reduction of in vitro thrombogenicity,” Biomaterials, vol. 18, no. 2, pp. 167–172, 1997.
[22]
Y. Bai, C. G. Koh, M. Boreman et al., “Surface modification for enhancing antibody binding on polymer-based microfluidic device for enzyme-linked immunosorbent assay,” Langmuir, vol. 22, no. 22, pp. 9458–9467, 2006.