全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Characterization of the Diffuse Galactic Emissions at Large Angular Scales Using the Tenerife Data

DOI: 10.1155/2013/780407

Full-Text   Cite this paper   Add to My Lib

Abstract:

The anomalous microwave emission (AME) has been proved to be an important component of the galactic diffuse emission in the range from 20 to 60?GHz. To discriminate between different models of AME, low frequency microwave data from 10 to 20?GHz are needed. We present here a reanalysis of published and unpublished Tenerife data from 10 to 33?GHz at large angular scales (from 5 to 15 degrees). We cross-correlate the Tenerife data to templates of the main galactic diffuse emissions: synchrotron, free-free, and thermal dust. We find evidence of dust-correlated emission in the Tenerife data that could be explained as spinning dust grain emission. 1. Introduction The anomalous microwave emission (AME) is an important contributor of the galactic diffuse emission in the range from 20 to 60?GHz. It was first identified by [1, 2] as free-free emission from electrons with temperature, ?K. Draine and Lazarian [3] argued that AME may result from electric dipole radiation due to small rotating grains, the so-called spinning dust. Models of the spinning dust emission, Draine and Lazarian [4] show that an emissivity spectrum peaking at around 20–50?GHz is able to reproduce the observations [5–12]. The initial spinning dust model has been refined regarding the shape and rotational properties of the dust grains [13–15]. An alternative explanation of AME was proposed by Draine and Lazarian [16] based on magnetic dipole radiation arising from hot ferromagnetic grains. Observations have placed limits of a few percent on the fractional polarization towards AME targets [9, 17–20]. This excludes perfectly aligned single-domain magnetic grains; however, other alignments and grain compositions produce similarly low levels of polarization [21]. A correlation between microwave and infrared maps, mainly dominated by dust thermal emission [22], was observed for various experiments, for example, on COBE/DMR [23, 24], OVRO [1, 2], Saskatoon [25, 26], survey at 19?GHz [27, 28], and Tenerife [29, 30]. A similar signal was found in compact regions by [5] and in some molecular clouds based on data from COSMOSOMAS [7, 31], AMI (Ami-Consortium: [32, 33]), CBI [9, 34], VSA [12], and Planck [35]. A recent study of the Small Magellanic Cloud also claims a detection of AME [36]. Independently, Bennett et al. [41] proposed an alternative explanation of AME based on flat-spectrum synchrotron emission associated to star-forming regions to explain part of the WMAP first-year observations. This hypothesis seems to be in disagreement with results from de Oliveira-Costa et al. [6]; Fernández-Cerezo et

References

[1]  E. M. Leitch, A. C. S. Readhead, T. J. Pearson, and S. T. Myers, “An anomalous component of galactic emission,” The Astrophysical Journal, vol. 486, no. 1, pp. 23–26, 1997.
[2]  E. M. Leitch, A. C. S. Readhead, T. J. Pearson, and S. T. Myers, “An anomalous component of galactic emission,” Astrophysical Journal Letters, vol. 486, no. 1, pp. L23–L26, 1997.
[3]  B. T. Draine and A. Lazarian, “Diffuse Galactic emission from spinning dust grains,” The Astrophysical Journal Letters, vol. 494, no. 1, pp. L19–L22, 1998.
[4]  B. T. Draine and A. Lazarian, “Electric dipole radiation from spinning dust grains,” The Astrophysical Journal, vol. 508, no. 1, pp. 157–179, 1998.
[5]  Douglas P. Finkbeiner, “A full-sky Hα template for microwave foreground prediction,” The Astrophysical Journal Supplement, vol. 146, no. 2, pp. 407–415, 2003.
[6]  A. De Oliveira-Costa, M. Tegmark, R. D. Davies et al., “The quest for microwave foreground X,” Astrophysical Journal Letters, vol. 606, no. 2, pp. L89–L92, 2004.
[7]  R. A. Watson, R. Rebolo, J. A. Rubi?o-Martín et al., et al., “Detection of anomalous microwave emission in the perseus molecular cloud with the COSMOSOMAS experiment,” The Astrophysical Journal Letters, vol. 624, no. 2, pp. L89–L92, 2005.
[8]  S. Iglesias-Groth, “Electric dipole emission by fulleranes and galactic anomalous microwave emission,” The Astrophysical Journal Letters, vol. 632, no. 1, pp. L25–L28, 2005.
[9]  S. Casassus, G. F. Cabrera, F. F?rster, T. J. Pearson, A. C. S. Readhead, and C. Dickinson, “Morphological analysis of the centimeter-wave continuum in the dark cloud LDN 1622,” The Astrophysical Journal, vol. 639, no. 2, pp. 951–964, 2006.
[10]  S. Casassus, C. Dickinson, K. Cleary et al., et al., “Centimetre-wave continuum radiation from the ρ Ophiuchi molecular cloud,” Monthly Notices of the Royal Astronomical Society, vol. 391, no. 3, pp. 1075–1090, 2008.
[11]  C. Dickinson, R. D. Davies, J. R. Allison et al., et al., “Anomalous microwave emission from the HII region RCW175,” The Astrophysical Journal, vol. 690, no. 2, pp. 1585–1589, 2009.
[12]  C. T. Tibbs, R. A. Watson, C. Dickinson, et al., “Very small array observations of the anomalous microwave emission in the Perseus region,” Monthly Notices of the Royal Astronomical Society, vol. 402, no. 3, pp. 1969–1979, 2010.
[13]  Y. Ali-Ha?moud, C. M. Hirata, and C. Dickinson, “A refined model for spinning dust radiation,” Monthly Notices of the Royal Astronomical Society, vol. 395, no. 2, pp. 1055–1078, 2009.
[14]  T. Hoang, B. T. Draine, and A. Lazarian, “Improving the model of emission from spinning dust: effects of grain wobbling and transient spin-up,” Astrophysical Journal Letters, vol. 715, no. 2, pp. 1462–1485, 2010.
[15]  T. Hoang, A. Lazarian, and B. T. Draine, “Spinning dust emission: effects of irregular grain shape, transient heating and comparison with WMAP results,” The Astrophysical Journal, vol. 741, no. 2, p. 87, 2011.
[16]  B. T. Draine and A. Lazarian, “Magnetic dipole microwave emission from dust grains,” Astrophysical Journal Letters, vol. 512, no. 2, pp. 740–754, 1999.
[17]  E. S. Battistelli, R. Rebolo, J. A. Rubi?o-Martín et al., “Polarization observations of the anomalous microwave emission in the perseus molecular complex with the COSMOSOMAS experiment,” The Astrophysical Journal Letters, vol. 645, no. 2, pp. L141–L144, 2006.
[18]  A. Kogut, J. Dunkley, C. L. Bennett, et al., “Three-year wilkinson microwave anisotropy probe (WMAP) observations: foreground polarization,” The Astrophysical Journal, vol. 665, no. 1, pp. 335–362, 2007.
[19]  B. S. Mason, T. Robishaw, C. Heiles, D. Finkbeiner, and C. Dickinson, “A limit on the polarized anomalous microwave emission of lynds 1622,” Astrophysical Journal Letters, vol. 697, no. 2, pp. 1187–1193, 2009.
[20]  C. H. López-Caraballo, J. A. Rubi?o-Martín, R. Rebolo, and R. Génova-Santos, “Constraints on the polarization of the anomalous microwave emission in the perseus molecular complex from seven-year WMAP data,” The Astrophysical Journal, vol. 729, no. 1, p. 25, 2011.
[21]  B. T. Draine and B. Hensley, “Magnetic nanoparticles in the interstellar medium: emission spectrum and polarization,” The Astrophysical Journal, vol. 765, no. 2, p. 159, 2013.
[22]  F. X. Desert, F. Boulanger, and J. L. Puget, Eds., “Interstellar dust models for extinction and emission,” Astronomy & Astrophysics, vol. 237, no. 1, pp. 2015–236, 1990.
[23]  A. Kogut, A. J. Banday, C. L. Bennett, K. M. Gorski, G. Hinshaw, and W. T. Reach, “High-Latitude Galactic Emission in the COBE Differential Microwave Radiometer 2 Year Sky Maps,” The Astrophysical Journal, vol. 460, 1 pages, 1996.
[24]  A. Kogut, A. J. Banday, C. L. Bennett et al., “Microwave emission at high galactic latitudes in the four-year DMR sky maps,” The Astrophysical Journal Letters, vol. 464, no. 1, pp. L5–L19, 1996.
[25]  M. S. Kowitt, E. S. Cheng, D. A. Cottingham et al., “A detection of bright features in the microwave background,” The Astrophysical Journal, vol. 482, no. 1, pp. 17–21, 1997.
[26]  A. De Oliveira-Costa, A. Kogut, M. J. Deviln, C. Barth Netterfield, L. A. Page, and E. J. Wollack, “Galactic microwave emission at degree angular scales,” Astrophysical Journal Letters, vol. 482, no. 1, pp. L17–L20, 1997.
[27]  A. de Olivera-Costa, M. Tegmark, L. A. Page, and S. P. Boughn, “Galactic emission at 19?GHz,” Astrophysical Journal, vol. 509, no. 1, pp. 9–12, 1998.
[28]  A. de Olivera-Costa, M. Tegmark, L. A. Page, and S. P. Boughn, “Galactic emission at 19?GHz,” Astrophysical Journal Letters, vol. 509, no. 1, pp. L9–L12, 1998.
[29]  A. de Oliveira-Costa, M. Tegmark, C. M. Gutierrez et al., “Cross-correlation of Tenerife data with Galactic templates—evidence for spinning dust?” The Astrophysical Journal Letters, vol. 527, no. 1, pp. L9–L12, 1999.
[30]  A. de Oliveira-Costa, M. Tegmark, C. M. Gutierrez et al., “Cross-correlation of Tenerife data with Galactic templates—evidence for spinning dust?” The Astrophysical Journal, vol. 527, no. 1, pp. 9–12, 1999.
[31]  R. Genova-Santos, R. Rebolo, J. A. Rubino-Martin, C. H. Lopez-Caraballo, and S. R. Hildebrandt, “Detection of anomalous microwave emission in the pleiades reflection nebula with Wilkinson Microwave Anisotropy Probe and the COSMOSOMAS experiment,” Astrophysical Journal, vol. 743, no. 1, p. 67, 2011.
[32]  A. M. M. Scaife, N. Hurley-Walker, D. A. Green et al., “An excess of emission in the dark cloud LDN1111 with the Arcminute Microkelvin Imager,” Monthly Notices of the Royal Astronomical Society, vol. 394, no. 1, pp. L46–L50, 2009.
[33]  A. M. I. Consortium, A. M. M. Scaife, N. Hurley-Walker et al., et al., “AMI observations of Lynds dark nebulae: further evidence for anomalous cm-wave emission,” Monthly Notices of the Royal Astronomical Society, vol. 400, no. 3, pp. 1394–1412, 2009.
[34]  P. Castellanos, S. Casassus, C. Dickinson et al., et al., “Dust-correlated centimetre-wave radiation from the M78 reflection nebula,” Monthly Notices of the Royal Astronomical Society, vol. 411, no. 2, pp. 1137–1150, 2011.
[35]  Planck Collaboration, “Planck early results. XX. New light on anomalous microwave emission from spinning dust grains,” Astronomy & Astrophysics, vol. 536, article A20, 17 pages, 2011.
[36]  C. Bot, N. Ysard, D. Paradis et al., “Submillimeter to centimeter excess emission from the Magellanic Clouds. II. On the nature of the excess,” Astronomy & Astrophysics, vol. 523, article A20, pp. 1–7, 2010.
[37]  G. Hinshaw, A. J. Banday, C. L. Bennett et al., “Band power spectra in the COBE 1 DMR four-year anisotropy maps,” Astrophysical Journal Letters, vol. 464, no. 1, pp. L17–L20, 1996.
[38]  K. Coble, M. Dragovan, J. Kovac et al., et al., “Anisotropy in the cosmic microwave background at degree angular scales: python V results,” The Astrophysical Journal Letters, vol. 519, no. 1, pp. L5–L8, 1999.
[39]  P. Mukherjee, A. W. Jones, R. Kneissl, and A. N. Lasenby, “On dust-correlated Galactic emission in the Tenerife data,” Monthly Notices of the Royal Astronomical Society, vol. 320, no. 2, pp. 224–234, 2001.
[40]  J. C. Hamilton and K. M. Ganga, “Correlation of the South Pole 94 data with 100?μm and 408?MHz maps,” Astronomy & Astrophysics, vol. 368, no. 3, pp. 760–765, 2001.
[41]  C. L. Bennett, M. Halpern, G. Hinshaw et al., et al., “First-year wilkinson microwave anisotropy probe (WMAP) observations: preliminary maps and basic results,” The Astrophysical Journal Supplement Series, vol. 148, no. 1, pp. 1–27, 2003.
[42]  S. Fernández-Cerezo, C. M. Gutierrez, R. Rebolo et al., “Observations of the cosmic microwave background and galactic foregrounds at 12–17?GHz with the COSMOSOMAS experiment,” Monthly Notices of the Royal Astronomical Society, vol. 370, no. 1, pp. 15–24, 2006.
[43]  S. R. Hildebrandt, R. Rebolo, J. A. Rubi?o-Martín et al., “COSMOSOMAS observations of the cosmic microwave background and Galactic foregrounds at 11?GHz: evidence for anomalous microwave emission at high Galactic latitude,” Monthly Notices of the Royal Astronomical Society, vol. 382, no. 2, pp. 594–608, 2007.
[44]  N. Ysard, M. A. Miville-Deschênes, and L. Verstraete, “Probing the origin of the microwave anomalous foreground,” Astronomy & Astrophysics, vol. 509, article L1, 2010.
[45]  R. D. Davies, C. Dickinson, A. J. Banday, T. R. Jaffe, K. M. Górski, and R. J. Davis, “A determination of the spectra of Galactic components observed by the Wilkinson Microwave Anisotropy Probe,” Monthly Notices of the Royal Astronomical Society, vol. 370, no. 3, pp. 1125–1139, 2006.
[46]  A. Kogut, D. J. Fixsen, S. M. Levin et al., “Arcade 2 observations of galactic radio emission,” The Astrophysical Journal, vol. 734, no. 1, p. 4, 2011.
[47]  Carlos M. Gutierrez, R. Rebolo, Robert A. Watson, Rod D. Davies, Aled W. Jones, and Anthony N. Lasenby, “The Tenerife cosmic microwave background maps: observations and first analysis,” The Astrophysical Journal, vol. 529, no. 1, pp. 47–55, 2000.
[48]  S. Hancock, R. D. Davies, A. N. Lasenby et al., “Direct observation of structure in the cosmic microwave background,” Nature, vol. 367, no. 6461, pp. 333–338, 1994.
[49]  G. Ribicki and A. Lightman, Radiative Processes in Astrophysics, Wiley, New York, NY, USA, 1979.
[50]  M. Longair, High Energy Astrophysics, Cambridge University Press, 1994.
[51]  G. De Zotti, L. Toffolatti, F. Argüeso et al., “The Planck Surveyor mission: astrophysical prospects,” AIP Conference Proceedings, vol. 476, pp. 204–223, 1999.
[52]  K. Lawson, C. Mayer, J. Osborn, and M. Parkinson, “Variations in the Spectral Index of the Galactic Radio Continuum Emission in the Northern Hemisphere,” Monthly Notices of the Royal Astronomical Society, vol. 286, p. 307, 1987.
[53]  C. G. T. Haslam, U. Klein, C. J. Salter, et al., “A 408?MHz all-sky continuum survey. I: observations at southern declinations and for the North Polar region,” Astronomy & Astrophysics, vol. 100, no. 2, pp. 209–219, 1981.
[54]  P. Reich and W. Reich, “A map of spectral indices of the Galactic radio continuum emission between 408 MHz and 1420 MHz for the entire northern sky,” Astronomy & Astrophysics, vol. 74, p. 4, 1988.
[55]  R. D. Davies, R. A. Watson, and C. M. Gutierrez, “Galactic synchrotron emission at high frequencies,” Monthly Notices of the Royal Astronomical Society, vol. 278, no. 4, pp. 925–939, 1996.
[56]  F. R. Bouchet and R. Gispert, “Foregrounds and CMB experiments: I. Semi-analytical estimates of contamination,” New Astronomy, vol. 4, no. 6, pp. 443–479, 1999.
[57]  A. Lasenby, “Radio frequency foreground emission and the separation of microwave anisotropies from foreground contamination,” in Proceedings of the 16th Moriond Astrophysics Meeting: Microwave Background Anisotropies, vol. 453, 1996.
[58]  D. Valls-Gabaud, “Cosmological applications of Hα surveys,” Publications of the Astronomical Society of Australia, vol. 15, no. 1, pp. 111–117, 1998.
[59]  L. M. Haffner, R. J. Reynolds, and S. L. Tufte, “WHAM observations of H-alpha, [S II], and [N II] toward the Orion and perseus arms: probing the physical conditions of the warm ionized medium,” Astrophysical Journal Letters, vol. 523, no. 1, pp. 223–233, 1999.
[60]  S. Veeraraghavan and R. D. Davies, “Low frequency galactic backgrounds,” in Proceedings of the Particle Physics and Early Universe Conference, Cambridge, UK, April 1997.
[61]  F. Boulanger, A. Abergel, J. P. Bernard et al., “The dust/gas correlation at high Galactic latitude,” Astronomy & Astrophysics, vol. 312, no. 1, pp. 256–262, 1996.
[62]  T. N. Gautier, T. Cawlfield, and M. W. Werner, “IR emission from small grains in HII regions and reflection nebulae,” Bulletin of the American Astronomical Society, vol. 24, p. 1120, 1992.
[63]  D. J. Schlegel, D. P. Finkbeiner, and M. Davis, “Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds,” Astrophysical Journal Letters, vol. 500, no. 2, pp. 525–553, 1998.
[64]  K. Rohlfs and T. Wilson, Tools of Radio Astronomy, Springer, 2000.
[65]  A. Franceschini, L. Toffolatti, L. Danese, and G. de Zotti, “Discrete source contributions to small-scale anisotropies of the microwave background,” Astrophysical Journal, vol. 344, pp. 35–45, 1989.
[66]  K. M. Górski, A. J. Banday, C. L. Bennett et al., “Power spectrum of primordial inhomogeneity determined from the FOUR-Year COBE DMR sky maps,” The Astrophysical Journal Letters, vol. 464, no. 1, pp. L11–L15, 1996.
[67]  M. Zaldarriaga, Fluctuations in the cosmic microwave background [Ph.D. thesis], Massachusetts Institute of Technology, 1998.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133