Three cases of large-amplitude, small spatial-scale interplanetary particle gradients observed by the anticoincidence shield (ACS) aboard the INTEGRAL spacecraft in 2006 are investigated. The high data rates provided by the INTEGRAL ACS allow an unprecedented ability to probe the fine structure of GCR propagation in the inner Heliosphere. For two of the three cases, calculating perpendicular and parallel cosmic ray diffusion coefficients based on both field and particle data results in parallel diffusion appearing to satisfy a convection gradient current balance, provided that the magnetic scattering of the particles can be described by quasi-linear theory. In the third case, perpendicular diffusion seems to dominate. The likelihood of magnetic flux rope topologies within solar ejecta affecting the local modulation is considered, and its importance in understanding the field-particle interaction for the astrophysics of nonthermal particle phenomena is discussed. 1. Introduction A Forbush Decrease (FD) is a global transient decrease in Galactic Cosmic-Ray (GCR) intensity followed by a substantially slower recovery. Since Scott Forbush’s discovery and description of these phenomena in the late 1930s, FDs have been put into context with increasing developments within heliospheric physics. In particular, detailed observations of coronal mass ejections (CMEs) and in situ observations of the solar wind and energetic particles have greatly increased understanding of the underlying physics of FDs (see review articles by [1–3]). This investigation focuses on small amplitude and high-frequency variability in the GCR corresponding to timescales less than a few hours, much shorter than that described by the classical FD. However, small-amplitude, mHz variability in the GCR is an experimental challenge in that very large instrumental geometric factors are required in order to make statistically significant measurements of the GCR in time periods of a few minutes or less. Therefore, only a few of these investigations can be found in the literature. Among these studies, [4] establishes the existence of short-spatial-scale GCR intensity gradients of a few percent amplitude (at >200?MeV energies) convecting with the solar wind past the Earth, coincident with the observation of an FD. This study correlates magnetic substructures within interplanetary CMEs (ICMEs) with short-scale intensity variations in the GCR. The authors in [5] investigate four simple magnetic field models for explaining short-term reductions in the GCR intensity and associated energetic particle
References
[1]
J. A. Lockwood, “Forbush decreases in the cosmic radiation,” Space Science Reviews, vol. 12, no. 5, pp. 658–715, 1971.
[2]
H. V. Cane, “Coronal mass ejections and forbush decreases,” Space Science Reviews, vol. 93, no. 1-2, pp. 55–77, 2000.
[3]
I. G. Richardson, “Energetic particles and corotating interaction regions in the solar wind,” Space Science Reviews, vol. 111, no. 3-4, pp. 267–376, 2004.
[4]
T. Mulligan, J. B. Blake, D. Shaul et al., “Short-period variability in the galactic cosmic ray intensity: high statistical resolution observations and interpretation around the time of a Forbush decrease in August 2006,” Journal of Geophysical Research A, vol. 114, no. 7, Article ID A07105, 2009.
[5]
J. J. Quenby, T. Mulligan, J. B. Blake, J. E. Mazur, and D. Shaul, “Local and nonlocal geometry of interplanetary coronal mass ejections: galactic cosmic ray (GCR) short-period variations and magnetic field modeling,” Journal of Geophysical Research, vol. 113, no. A10, 2008.
[6]
J. R. Jokipii, “Cosmic-ray propagation. I. Charged particles in a random magnetic field,” The Astrophysical Journal, vol. 146, p. 480, 1966.
[7]
J. F. Valdés-Galicia, G. Wibberenz, J. J. Quenby, X. Moussas, G. Green, and F. M. Neubauer, “Pitch angle scattering of solar particles: comparison of “particle” and “field” approach—I. Strong scattering,” Solar Physics, vol. 117, no. 1, pp. 135–156, 1988.
[8]
U. D. Langer, M. S. Potgieter, and W. R. Webber, “Modelling of “barrier” modulation for cosmic ray protons in the outer heliosphere,” Advances in Space Research, vol. 34, no. 1, pp. 138–143, 2004.
[9]
F. McDonald, Z. Fujii, P. Ferrando et al., “The cosmic ray radial and latitudinal intensity gradients in the inner and outer heliosphere 1996-2001.3,” in Proceedings of the 27th International Cosmic Ray Conference (ICRC'01), vol. 10, p. 3906, Hamburg, Germany, August 2001.
[10]
G. Vedrenne, J. P. Roques, V. Sch?nfelder et al., “SPI: the spectrometer aboard INTEGRAL,” Astronomy and Astrophysics, vol. 411, no. 1, pp. L63–L70, 2003.
[11]
P. Jean, G. Vedrenne, J. P. Roques et al., “SPI instrumental background characteristics,” Astronomy and Astrophysics, vol. 411, no. 1, pp. L107–L112, 2003.
[12]
B. J. Teegarden, J. Naya, H. Seifert, et al., “SPI: a high resolution imaging spectrometer for INTEGRAL,” in Proceedings of the 4th Compton Symposium, C. D. Dermer, M. S. Strickman, and J. D. Kurfess, Eds., vol. 410 of AIP, 1997.
[13]
K. Kudela and R. Brenkus, “Cosmic ray decreases and geomagnetic activity: list of events 1982–2002,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 66, no. 13-14, pp. 1121–1126, 2004.
[14]
C. F. Kennel, H. Petscheck, and H. E, “Limit on stably trapped particle fluxes,” Journal of Geophysical Research, vol. 71, no. 1, pp. 1–28, 1966.
[15]
A. Teufel and R. Schlickeiser, “Analytic calculation of the parallel mean free path of heliospheric cosmic rays: I. Dynamical magnetic slab turbulence and random sweeping slab turbulence,” Astronomy and Astrophysics, vol. 393, no. 2, pp. 703–715, 2002.
[16]
K. Hasselmann and G. Wibberenz, “A note on the parallel diffusion coefficient,” The Astrophysical Journal, vol. 162, p. 1049, 1970.
[17]
J. J. Quenby, G. E. Morfill, and A. C. Durney, “The solar proton diffusion mean free path and the anisotropic particle event of November 18, 1968,” Journal of Geophysical Research, vol. 79, no. 1, pp. 9–16, 1974.
[18]
M. L. Goldstein, “The mean free path of low-rigidity cosmic rays,” Journal of Geophysical Research, vol. 85, no. A6, pp. 3033–3036, 1980.
[19]
A. Shalchi, J. W. Bieber, W. H. Matthaeus, and R. Schlickeiser, “Parallel and perpendicular transport of heliospheric cosmic rays in an improved dynamical turbulence model,” Astrophysical Journal, vol. 642, no. 1, pp. 230–243, 2006.
[20]
M. A. Foreman, J. R. Jokippi, and A. J. Owens, “Cosmic-ray streaming perpendicular to the mean magnetic field,” The Astrophysical Journal, vol. 192, pp. 535–540, 1974.
[21]
W. H. Matthaeus, G. Qin, J. W. Bieber, and G. P. Zank, “Nonlinear collisionless perpendicular diffusion of charged particles,” Astrophysical Journal Letters, vol. 590, no. 1, pp. L53–L56, 2003.
[22]
A. Shalchi, “A unified particle diffusion theory for cross-field scattering: subdiffusion, recovery of diffusion, and diffusion in three-dimensional turbulence,” Astrophysical Journal Letters, vol. 720, no. 2, pp. L127–L130, 2010.
[23]
X. Moussas, J. J. Quenby, and J. H. Valdes-Galicia, “Drift motion and perpendicular diffusion of energetic particles in interplanetary space based on spacecraft data,” Astrophysics and Space Science, vol. 86, no. 1, pp. 197–207, 1982.