全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Discovery of Anomalous Microwave Emission

DOI: 10.1155/2013/352407

Full-Text   Cite this paper   Add to My Lib

Abstract:

We discuss the first detection of anomalous microwave emission, in the Owens Valley RING5M experiment, and its interpretation in the context of the ground-based cosmic microwave background (CMB) experiments of the early 1990s. The RING5M experiment was one of the first attempts to constrain the anisotropy power on sub-horizon scales, by observing a set of -size fields around the North Celestial Pole (NCP). Fields were selected close to the NCP to allow continuous integration from the Owens Valley site. The experiment detected significant emission at both 14.5?GHz and 30?GHz, consistent with a mixture of CMB and a flat-spectrum foreground component, which we termed anomalous, as it could be explained neither by thermal dust emission, nor by standard models for synchrotron or free-free emission. A significant spatial correlation was found between the extracted foreground component and structure in the IRAS 100?μm maps. While microwave emission from spinning dust may be the most natural explanation for this correlation, spinning dust is unlikely to account for all of the anomalous emission seen in the RING5M data. 1. Introduction From the perspective of the 21st century cosmology, it can be hard to imagine how primitive the state of our knowledge was a short twenty years ago and how rapidly the landscape was changing at the time. Today, ground-based experiments like the South Pole Telescope (SPT) and the Atacama Cosmology Telescope (ACT) have measured the high- power spectrum with enough resolution to detect the first nine Doppler peaks (SPT [1, 2], ACT [3]) and enough sensitivity to detect the background of SZ power from unresolved galaxy clusters [4]. The combination of ground, balloon-borne, and space-based missions have already determined fundamental cosmological parameters to uncertainties of a few percent (c.f. DASI [5], ACBAR [6], Boomerang [7], WMAP [8]), and new data from Planck are poised to refine these further. The E-mode polarization of the CMB, whose detection was unthinkable twenty years ago, is now routinely measured by ground-based experiments (first detected by DASI [9, 10], with progressive improvements in resolution and sensitivity by CBI [11], QUaD [12], BICEPI [13], and QUIET [14]), while ever more sensitive limits on the B-mode power spectrum are beginning to place interesting constraints on the tensor-to-scalar ratio [13] (with the next generation cameras like SPTpol, BICEPII, the Keck Array, PolarBear, and ACTpol already in operation). By contrast, the early 1990s had just witnessed the first ever detection of CMB anisotropy on

References

[1]  R. Keisler, C. L. Reichardt, K. A. Aird et al., “A measurement of the damping tail of the cosmic microwave background power spectrum with the south pole telescope,” The Astrophysical Journal, vol. 743, no. 1, article 28, 2011.
[2]  K. Story, C. L. Reichardt, Z. Hou et al., “A measurement of the cosmic microwave background damping tail from the 2500-square-degree SPT-SZ survey,” http://arxiv.org/abs/1210.7231.
[3]  S. Das, T. Louis, M. R. Nolta et al., “The Atacama Cosmology Telescope: temperature and gravitational lensing power spectrum measurements from three seasons of data,” http://arxiv.org/abs/arXiv:1301.1037.
[4]  C. L. Reichardt, L. Shaw, O. Zahn et al., “A measurement of secondary cosmic microwave background anisotropies with two years of South Pole Telescope observations,” The Astrophysical Journal, vol. 755, no. 1, 2012.
[5]  C. Pryke, N. W. Halverson, E. M. Leitch et al., “Cosmological parameter extraction from the first season of observations with the degree angular scale interferometer,” Astrophysical Journal Letters, vol. 568, no. 1, pp. 46–51, 2002.
[6]  J. H. Goldstein, P. A. R. Ade, J. J. Bock et al., “Estimates of cosmological parameters using the cosmic microwave background angular power spectrum of ACBAR,” Astrophysical Journal, vol. 599, no. 2, pp. 773–785, 2003.
[7]  C. J. Mactavish, P. A. R. Ade, J. J. Bock et al., “Cosmological parameters from the 2003 flight of Boomerang,” Astrophysical Journal, vol. 647, no. 2, pp. 799–812, 2006.
[8]  D. Larson, J. Dunkley, G. Hinshaw et al., “Seven-year wilkinson microwave anisotropy probe (WMAP*) observations: power spectra and WMAP-derived parameters,” Astrophysical Journal, Supplement Series, vol. 192, no. 2, article 16, 2011.
[9]  J. M. Kovac, E. M. Leitch, C. Pryke, J. E. Carlstrom, N. W. Halverson, and W. L. Holzapfel, “Detection of polarization in the cosmic microwave background using DASI,” Nature, vol. 420, no. 6917, pp. 772–787, 2002.
[10]  E. M. Leitch, J. M. Kovac, N. W. Halverson, J. E. Carlstrom, C. Pryke, and M. W. E. Smith, “Degree angular scale interferometer 3 year cosmic microwave background polarization results,” Astrophysical Journal, vol. 624, no. 1, pp. 10–20, 2005.
[11]  A. C. S. Readhead, S. T. Myers, T. J. Pearson et al., “Polarization observations with the cosmic background imager,” Science, vol. 306, no. 5697, pp. 836–844, 2004.
[12]  C. Pryke, P. Ade, J. Bock et al., “Second and third season quad cosmic microwave background temperature and polarization power spectra,” Astrophysical Journal, vol. 692, no. 2, p. 1247, 2009.
[13]  H. C. Chiang, P. A. R. Ade, D. Barkats et al., “Measurement of cosmic microwave background polarization power spectra from two years of BICEP data,” Astrophysical Journal, vol. 711, no. 2, pp. 1123–1140, 2010.
[14]  C. Bischoff, A. Brizius, I. Buder et al., “First season quiet observations: measurements of cosmic microwave background polarization power spectra at 43?ghz in the multipole range ,” Astrophysical Journal, vol. 741, no. 2, article 111, 2011.
[15]  G. Smoot, C. Bennett, E. Wright et al., “Structure in the cobe differential microwave radiometer first-year maps,” Astrophysical Journal, vol. 396, no. 1, pp. L1–L5, 1992.
[16]  T. Gaier, J. Schuster, J. Gundersen et al., “A degree-scale measurement of anisotropy of the cosmic background radiation,” Astrophysical Journal Letters, vol. 398, no. 1, pp. L1–L4, 1992.
[17]  M. Dragovan, J. E. Ruhl, G. Novak et al., “Anisotropy in the microwave sky at intermediate angular scales,” Astrophysical Journal Letters, vol. 427, no. 2, pp. L67–L70, 1994.
[18]  J. O. Gundersen, A. C. Clapp, M. Devlin et al., “A degree scale anisotropy measurement of the cosmic microwave background near the star gamma ursae minoris,” Astrophysical Journal Letters, vol. 413, no. 1, pp. L1–L5, 1993.
[19]  L. Piccirillo and P. Calisse, “Measurements of cosmic background radiation anisotropy at intermediate angular scale,” Astrophysical Journal Letters, vol. 411, no. 2, pp. 529–533, 1993.
[20]  G. S. Tucker, G. S. Griffin, H. T. Nguyen, and J. B. Peterson, “A search for small-scale anisotropy in the cosmic microwave background,” Astrophysical Journal Letters, vol. 419, no. 2, pp. L45–L48, 1993.
[21]  A. C. S. Readhead, C. R. Lawrence, S. T. Myers, W. L. W. Sargent, H. E. Hardebeck, and A. T. Moffet, “A limit on the anisotropy of the microwave background radiation on arcminute scales,” Astrophysical Journal, vol. 346, pp. 566–587, 1989.
[22]  E. M. Leitch, A measurement of anisotropy in the microwave background on 7′–22′ scales [Ph.D. thesis], California Institute of Technology, 1998.
[23]  E. M. Leitch, A. C. S. Readhead, T. J. Pearson, S. T. Myers, S. Gulkis, and C. R. Lawrence, “A measurement of anisotropy in the cosmic microwave background on 7′–22′ scales,” Astrophysical Journal, vol. 532, no. 1, pp. 37–56, 2000.
[24]  C. B. Netterfield, M. J. Devlin, N. Jarosik, L. Page, and E. J. Wollack, “A measurement of the angular power spectrum of the anisotropy in the cosmic microwave background,” Astrophysical Journal Letters, vol. 474, no. 1, pp. 47–66, 1997.
[25]  P. F. Scott, R. Saunders, G. Pooley et al., “Measurements of structure in the cosmic background radiation with the Cambridge cosmic anisotropy telescope,” Astrophysical Journal Letters, vol. 461, no. 1, pp. L1–L4, 1996.
[26]  R. B. Rengelink, Y. Tang, A. G. de Bruyn et al., “The Westerbork Northern Sky Survey (WENSS). I. A 570 square degree mini-survey around the North Ecliptic Pole,” Astronomy and Astrophysics Supplement Series, vol. 124, pp. 259–280, 1997.
[27]  I. Lerche, “On the spectral index distribution of supernova remnants,” Astronomy & Astrophysics, vol. 85, pp. 141–143, 1980.
[28]  R. J. Reynolds, S. L. Tufte, L. M. Haffner, K. Jaehnig, and J. W. Percival, “The Wisconsin Hα Mapper (WHAM): a brief review of performance characteristics and early scientific results,” Publications of the Astronomical Society of Australia, vol. 15, no. 1, pp. 14–18, 1998.
[29]  E. M. Leitch, A. C. S. Readhead, T. J. Pearson, and S. T. Myers, “An anomalous component of galactic emission,” Astrophysical Journal Letters, vol. 486, no. 1, pp. L23–L26, 1997.
[30]  C. Heiles, “Magnetic fields, pressures, and thermally unstable gas in prominent H I shells,” Astrophysical Journal, vol. 336, pp. 808–821, 1989.
[31]  H. Meyerdierks, A. Heithausen, and K. Reif, “The north celestial pole loop,” Astronomy and Astrophysics, vol. 245, pp. 247–256, 1991.
[32]  C. G. T. Haslam, C. J. Salter, H. Stoffel, and W. E. Wilson, “A 408?MHz all-sky continuum survey. II—the atlas of contour maps,” Astronomy and Astrophysics Supplement Series, vol. 47, p. 1, 1982.
[33]  B. T. Draine and A. Lazarian, “Diffuse galactic emission from spinning dust grains,” Astrophysical Journal Letters, vol. 494, no. 1, pp. L19–L22, 1998.
[34]  A. Kogut, A. J. Banday, C. L. Bennett, K. M. Górski, G. Hinshaw, and W. T. Reach, “High-latitude galactic emission in the cobe differential microwave radiometer 2 year sky maps,” Astrophysical Journal Letters, vol. 460, no. 1, pp. 1–9, 1996.
[35]  A. de Oliveira-Costa, A. Kogut, M. J. Deviln, C. B. Netterfield, L. A. Page, and E. J. Wollack, “Galactic microwave emission at degree angular scales,” Astrophysical Journal Letters, vol. 482, no. 1, pp. L17–L20, 1997.
[36]  G. Hinshaw, A. J. Banday, C. L. Bennett et al., “Band power spectra in the COBE 1 DMR four-year anisotropy maps,” Astrophysical Journal Letters, vol. 464, no. 1, pp. L17–L20, 1996.
[37]  K. Ganga, L. Page, E. Cheng, and S. Meyer, “The amplitude and spectral index of the large angular scale anisotropy in the cosmic microwave background radiation,” Astrophysical Journal Letters, vol. 432, no. 1, pp. L15–L18, 1994.
[38]  S. Hancock, C. M. Gutierrez, R. D. Davies et al., “Studies of cosmic microwave background structure at Dec. = + —II. Analysis and cosmological interpretation,” Monthly Notices of the Royal Astronomical Society, vol. 289, no. 3, pp. 505–514, 1997.
[39]  J. O. Gundersen, M. Lim, J. Staren et al., “Degree-scale anisotropy in the cosmic microwave background: SP94 results,” Astrophysical Journal Letters, vol. 443, no. 2, pp. L57–L60, 1995.
[40]  S. R. Platt, J. Kovac, M. Dragovan, J. B. Peterson, and J. E. Ruhl, “Anisotropy in the microwave sky at 90?GHz: results from python III,” Astrophysical Journal Letters, vol. 475, no. 1, pp. L1–L4, 1997.
[41]  P. De Bernardis, E. Aquilini, A. Boscaleri et al., “Degree-scale observations of cosmic microwave background anisotropies,” Astrophysical Journal Letters, vol. 422, no. 2, pp. L33–L36, 1994.
[42]  S. T. Tanaka, A. C. Clapp, M. J. Devlin et al., “Measurements of anisotropy in the cosmic microwave background radiation at 0.5° scales near the stars HR 5127 and φ Herculis,” Astrophysical Journal Letters, vol. 468, no. 2, pp. L81–L84, 1996.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133