There is a general consensus that magnetic fields, accretion disks, and rotating black holes are instrumental in the generation of the most powerful sources of energy in the known universe. Nonetheless, because magnetized accretion onto rotating black holes involves both the complications of nonlinear magnetohydrodynamics that currently cannot fully be treated numerically, and uncertainties about the origin of magnetic fields that at present are part of the input, the space of possible solutions remains less constrained. Consequently, the literature still bears witness to the proliferation of rather different black hole engine models. But the accumulated wealth of observational data is now sufficient to meaningfully distinguish between them. It is in this light that this critical paper compares the recent retrograde framework with standard “spin paradigm” prograde models. 1. Introduction When Roy Kerr presented his solution at the Texas Symposium almost five decades ago, the astronomical community, ironically, was too busy with the recent discovery of quasars to pay attention. But the importance of black holes is now grounded in observations pointing to a breadth and depth of a black hole impact that is likely still underestimated. In galaxies, black holes appear to participate in triggering and in quenching star formation, in heating and expanding gas, and in altering the mode of accretion [1–7]. They are connected to bulges and stellar dispersions at the spatial extremes of galaxies [8, 9], and in many cases the impact of black holes appears on cluster environments as well [1, 10–13]. But black hole influence is also observed on smaller scales, with stellar-mass black holes producing a rich panoply of observational signatures [14]. Black holes are both spatially and gravitationally irrelevant to galaxies as a whole, so the influence they exert is thought to occur during active phases when large amounts of energy spew from their centers in both kinetic form and radiation spanning the entire electromagnetic spectrum. Because the black hole scaling relations are ubiquitous, perhaps all galaxies experience an active phase during which black holes reveal their presence to the larger galaxy. And this active phase would involve accretion onto supermassive black holes [15, 16], the formation of powerful winds [17], and in some cases jet formation [18, 19], but the details of how jets are related to accretion remain elusive. The earliest analytic models involve accretion in either thin-disk or advection-dominated form [15, 16, 20, 21], and/or spin energy
References
[1]
B. R. McNamara and P. E. J. Nulsen, “Heating hot atmospheres with active galactic nuclei,” Annual Review of Astronomy and Astrophysics, vol. 45, pp. 117–175, 2007.
[2]
N. P. H. Nesvadba, M. D. Lehnert, C. De Breuck, A. M. Gilbert, and W. Van Breugel, “Evidence for powerful AGN winds at high redshift: Dynamics of galactic outflows in radio galaxies during the ‘quasar Era’,” Astronomy and Astrophysics, vol. 491, no. 2, pp. 407–424, 2008.
[3]
A. Mangalam, Gopal-Krishna, and P. J. Wiita, “The changing interstellar medium of massive elliptical galaxies and cosmic evolution of radio galaxies and quasars,” Monthly Notices of the Royal Astronomical Society, vol. 397, no. 4, pp. 2216–2224, 2009.
[4]
A. Cattaneo, S. M. Faber, J. Binney et al., “The role of black holes in galaxy formation and evolution,” Nature, vol. 460, pp. 213–219, 2009.
[5]
V. Antonuccio-Delogu and J. Silk, “Active galactic nuclei activity: self-regulation from backflow,” Monthly Notices of the Royal Astronomical Society, vol. 405, no. 2, pp. 1303–1314, 2010.
[6]
F. van de Voort, J. Schaye, C. M. Booth, and C. D. Vecchia, “The drop in the cosmic star formation rate below redshift 2 is caused by a change in the mode of gas accretion and by active galactic nucleus feedback,” Monthly Notices of the Royal Astronomical Society, vol. 415, no. 3, pp. 2782–2789, 2011.
[7]
W. Ishibashi and A. C. Fabian, “Active galactic nucleus feedback and triggering of star formation in galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 427, no. 4, pp. 2998–3005, 2012.
[8]
J. Magorrian, S. Tremaine, D. Richstone et al., “The demography of massive dark objects in galaxy centers,” Astronomical Journal, vol. 115, no. 6, pp. 2285–2305, 1998.
[9]
K. Gebhardt, “A relationship between nuclear black hole mass and galaxy velocity dispersion,” The Astrophysical Journal Letters, vol. 539, no. 1, article L13, 2000.
[10]
L. B?rzan, D. A. Rafferty, B. R. McNamara, M. W. Wise, and P. E. J. Nulsen, “A systematic study of radio-induced X-ray cavities in clusters, groups, and galaxies,” The Astrophysical Journal, vol. 607, no. 2, article 800, 2004.
[11]
D. A. Rafferty, “the feedback-regulated growth of black holes and bulges through gas accretion and starbursts in cluster central dominant galaxies,” The Astrophysical Journal, vol. 652, no. 1, article 216, 2006.
[12]
B. R. McNamara and P. E. J. Nulsen, “Mechanical feedback from active galactic nuclei in galaxies, groups and clusters,” New Journal of Physics, vol. 14, Article ID 055023, 2012.
[13]
M. Gitti, F. Brighenti, and B. R. McNamara, “Evidence for AGN feedback in galaxy clusters and groups,” Advances in Astronomy, vol. 2012, Article ID 950641, 24 pages, 2012.
[14]
R. A. Remillard and J. E. McClintock, “X-ray properties of black-hole binaries,” Annual Review of Astronomy and Astrophysics, vol. 44, pp. 49–92, 2006.
[15]
N. L. Shakura and R. A. Sunyaev, “Black holes in binary systems. Observational appearance,” Astronomy and Astrophysics, vol. 24, pp. 337–355, 1973.
[16]
I. Novikov and K. Thorne, “Astrophysics of black holes,” in Black Holes (Les Astres Occlus), C. DeWitt and B. S. DeWitt, Eds., pp. 343–450, Gordon Breach, New York, NY, USA, 1973.
[17]
J. Silk and M. J. Rees, “Quasars and galaxy formation,” Astronomy & Astrophysics, vol. 331, pp. L1–L4, 1998.
[18]
R. D. Blandford and R. L. Znajek, “Electromagnetic extraction of energy from Kerr black holes,” Monthly Notices of the Royal Astronomical Society, vol. 179, pp. 433–456, 1977.
[19]
R. D. Blandford and D. G. Payne, “Hydromagnetic flows from accretion discs and the production of radio jets,” Monthly Notices of the Royal Astronomical Society, vol. 199, pp. 883–903, 1982.
[20]
D. L. Meier, “The association of jet production with geometrically thick accretion flows and black hole rotation,” The Astrophysical Journal Letters, vol. 548, no. 1, article L9, 2001.
[21]
R. Narayan and I. Yi, “Advection-dominated accretion: self-similarity and bipolar outflows,” Astrophysical Journal, vol. 444, no. 1, part 1, pp. 231–243, 1995.
[22]
J. M. Bardeen, W. H. Press, and S. A. Teukolsky, “Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation,” Astrophysical Journal, vol. 178, pp. 347–370, 1972.
[23]
R. D. Blandford, “Physical processes in active galactic nuclei,” in Active Galactic Nuclei, T. J. L. Courvoisier and M. Mayor, Eds., pp. 161–275, Springer, Berlin, Germany, 1990.
[24]
A. S. Wilson and E. J. M. Colbert, “The difference between radio-loud and radio-quiet active galaxies,” Astrophysical Journal, vol. 438, no. 1, part 1, p. 62.
[25]
R. Moderski, M. Sikora, and J. P. Lasota, “On the spin paradigm and the radio dichotomy of quasars,” Monthly Notices of the Royal Astronomical Society, vol. 301, no. 1, pp. 142–148, 1998.
[26]
M. Sikora, ?. Stawarz, and J. P. Lasota, “Radio loudness of active galactic nuclei: observational facts and theoretical implications,” Astrophysical Journal, vol. 658, no. 2, pp. 815–828, 2007.
[27]
B. Punsly and F. V. Coroniti, “Ergosphere-driven winds,” Astrophysical Journal Letters, vol. 354, no. 2, pp. 583–615, 1990.
[28]
D. L. Meier, “A magnetically switched, rotating black hole model for the production of extragalactic radio jets and the fanaroff and riley class division,” The Astrophysical Journal, vol. 522, no. 2, article 753, 1999.
[29]
R. S. Nemmen, R. G. Bower, A. Babul, and T. Storchi-Bergmann, “Models for jet power in elliptical galaxies: a case for rapidly spinning black holes,” Monthly Notices of the Royal Astronomical Society, vol. 377, no. 4, pp. 1652–1662, 2007.
[30]
S. H. Lubow, J. C. B. Papaloizou, and J. E. Pringle, “On the stability of magnetic Wind-Driven accretion discs,” Monthly Notices of the Royal Astronomical Society, vol. 268, no. 4, pp. 1010–1014, 1994.
[31]
M. Livio, “extracting energy from black holes: the relative importance of the Blandford-Znajek mechanism,” The Astrophysical Journal, vol. 512, no. 1, article 100, 1999.
[32]
P. Ghosh and M. A. Abramowicz, “Electromagnetic extraction of rotational energy from disc-fed black holes: the strength of the Blandford-Znajek process,” Monthly Notices of the Royal Astronomical Society, vol. 292, no. 4, pp. 887–895, 1997.
[33]
J.-P. De Villiers, J. F. Hawley, and J. H. Krolik, “Magnetically driven accretion flows in the kerr metric. I. models and overall structure,” The Astrophysical Journal, vol. 599, no. 2, article 1238, 2003.
[34]
J.-P. De Villiers, J. F. Hawley, J. H. Krolik, and S. Hirose, “Magnetically driven accretion in the Kerr metric. III. Unbound outflows,” The Astrophysical Journal, vol. 620, no. 2, article 878, 2005.
[35]
J. C. McKinney and C. F. Gammie, “A measurement of the electromagnetic luminosity of a Kerr black hole,” Astrophysical Journal, vol. 611, no. 2 I, pp. 977–995, 2004.
[36]
J. C. McKinney, “General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems,” Monthly Notices of the Royal Astronomical Society, vol. 368, no. 4, pp. 1561–1582, 2006.
[37]
D. Garofalo, D. A. Evans, and R. M. Sambruna, “The evolution of radio-loud active galactic nuclei as a function of black hole spin,” Monthly Notices of the Royal Astronomical Society, vol. 406, no. 2, pp. 975–986, 2010.
[38]
D. L. Meier, Black Hole Astrophysics: the Engine Paradigm, Springer, Berlin, Germany, 2012.
[39]
M. J. Hardcastle, D. A. Evans, and J. H. Croston, “Hot and cold gas accretion and feedback in radio-loud active galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 376, no. 4, pp. 1849–1856, 2007.
[40]
D. M. Crenshaw, S. B. Kraemer, and J. R. Gabel, “The host galaxies of narrow-line seyfert 1 galaxies: evidence for bar-driven fueling,” The Astronomical Journal, vol. 126, no. 4, article 1690, 2003.
[41]
R. I. Davies, “a close look at star formation around active galactic nuclei,” The Astrophysical Journal, vol. 671, no. 2, article 1388, 2007.
[42]
Y.-M. Chen, J.-M. Wang, C.-S. Yan, C. Hu, and S. Zhang, “The starburst-active galactic nucleus connection: the role of young stellar populations in fueling supermassive black holes,” The Astrophysical Journal Letters, vol. 695, no. 2, article L130, 2009.
[43]
G. O. de Xivry, R. Davies, M. Schartmann et al., “The role of secular evolution in the black hole growth of narrow-line Seyfert 1 galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 417, no. 4, pp. 2721–2736, 2011.
[44]
M. Milosavljevic and D. Merritt, “Formation of galactic nuclei,” The Astrophysical Journal, vol. 563, no. 1, article 34, 2001.
[45]
J. M. Comerford, B. F. Gerke, D. Stern et al., “Kiloparsec-scale spatial offsets in double-peaked narrow-line active galactic nuclei. I. Markers for selection of compelling dual active galactic nucleus candidates,” Astrophysical Journal, vol. 753, no. 1, article 42, 2012.
[46]
M. Volonteri, F. Haardt, and P. Madau, “The assembly and merging history of supermassive black holes in hierarchical models of galaxy formation,” Astrophysical Journal Letters, vol. 582, no. 2 I, pp. 559–573, 2003.
[47]
C. J. Nixon, P. J. Cossins, A. R. King, and J. E. Pringle, “Retrograde accretion and merging supermassive black holes,” Monthly Notices of the Royal Astronomical Society, vol. 412, no. 3, pp. 1591–1598, 2011.
[48]
J. Kataoka, J. N. Reeves, K. Iwasawa et al., “Probing the disk-jet connection of the radio galaxy 3C 120 observed with Suzaku,” Publications of the Astronomical Society of Japan, vol. 59, no. 2, pp. 279–297, 2007.
[49]
R. M. Sambruna, J. N. Reeves, V. Braito et al., “Structure of the accretion flow in broad-line radio galaxies: the case of 3C 390.3,” Astrophysical Journal Letters, vol. 700, no. 2, pp. 1473–1487, 2009.
[50]
R. M. Sambruna, F. Tombesi, J. N. Reeves et al., “The SUZAKU view of 3C 382,” The Astrophysical Journal, vol. 734, no. 2, article 105, 2011.
[51]
D. Lynden-Bell, “Gravity power,” Physica Scripta, vol. 17, no. 3, article 185, p. 185, 1978.
[52]
L. Nobili, E. Turolla, and M. Calvani, “Are thick accretion disks the ?central engine? for astrophysical jets?” Lettere Al Nuovo Cimento Series 2, vol. 35, no. 10, pp. 335–340, 1982.
[53]
F. Haardt and L. Maraschi, “A two-phase model for the X-ray emission from Seyfert galaxies,” Astrophysical Journal Letters, vol. 380, no. 2, pp. L51–L54, 1991.
[54]
E. W. Bonning, G. A. Shields, A. C. Stevens, and S. Salviander, “Accretion disk temperatures of QSOs: constraints from the emission lines,” http://arxiv.org/abs/1210.6997.
[55]
L. Ballo, V. Braito, J. N. Reeves, R. M. Sambruna, and F. Tombesi, “The high-energy view of the broad-line radio galaxy 3C 111,” Monthly Notices of the Royal Astronomical Society, vol. 418, no. 4, pp. 2367–2380, 2011.
[56]
A. A. Esin, J. E. McClintock, and R. Narayan, “Advection-dominated accretion and the spectral states of black hole X-ray binaries: application to nova muscae 1991,” The Astrophysical Journal, vol. 489, no. 2, article 865, 1997.
[57]
P. C. Fragile, “No correlation between disc scale height and jet power in GRMHD simulations,” Monthly Notices of the Royal Astronomical Society, vol. 424, no. 1, pp. 524–531.
[58]
W. H. G. Lewin and M. van der Klis, Eds., Compact Stellar X-ray Sources, Cambridge Astrophysics Series, no. 39, Cambridge University Press, Cambridge, UK, 2006.
[59]
R. P. Fender, T. M. Belloni, and E. Gallo, “Towards a unified model for black hole X-ray binary jets,” Monthly Notices of the Royal Astronomical Society, vol. 355, no. 4, pp. 1105–1118, 2004.
[60]
T. J. Maccarone, E. Gallo, and R. Fender, “The connection between radio-quiet active galactic nuclei and the high/soft state of X-ray binaries,” Monthly Notices of the Royal Astronomical Society, vol. 345, pp. L19–L24, 2003.
[61]
E. G. Koerding, S. Jester, and R. Fender, “Accretion states and radio loudness in active galactic nuclei: analogies with X-ray binaries,” Monthly Notices of the Royal Astronomical Society, vol. 372, no. 3, pp. 1366–1378, 2006.
[62]
S. Markoff, “From multiwavelength to mass scaling: accretion and ejection in microquasars and AGN,” in The Jet Paradigm, Lecture Notes in Physics, pp. 143–172, Springer, Berlin, Germany, 2010.
[63]
E. Szuszkiewicz and J. C. Miller, “limit-cycle behaviour of thermally unstable accretion flows on to black holes,” Monthly Notices of the Royal Astronomical Society, vol. 298, no. 3, pp. 888–896, 1998.
[64]
V. Smolcic, “the radio AGN population dichotomy: green valley seyferts versus red sequence low-excitation active galactic nuclei,” The Astrophysical Journal Letters, vol. 699, no. 1, article L43, p. L43, 2009.
[65]
V. Smol?i?, G. Zamorani, E. Schinnerer et al., “Cosmic evolution of radio selected active galactic nuclei in the cosmos field,” Astrophysical Journal Letters, vol. 696, no. 1, pp. 24–39, 2009.
[66]
L. Foschini, “Evidence of powerful relativistic jets in narrow-line Seyfert 1 galaxies,” in Proceedings of the Workshop Narrow-Line Seyfert 1 Galaxies and Their Place in the Universe, vol. NLS1, p. 024, 2011.
[67]
A. Martinez-Sansigre and S. Rawlings, “Observational constraints on the spin of the most massive black holes from radio observations,” Monthly Notices of the Royal Astronomical Society, vol. 414, no. 3, pp. 1937–1964, 2011.
[68]
N. Fanidakis, C. M. Baugh, A. J. Benson et al., “Grand unification of AGN activity in the ΛCDM cosmology,” Monthly Notices of the Royal Astronomical Society, vol. 410, no. 1, pp. 53–74, 2011.
[69]
L. W. Brenneman and C. S. Reynolds, “Relativistic broadening of iron emission lines in a sample of active galactic nuclei,” Astrophysical Journal Letters, vol. 702, no. 2, pp. 1367–1386, 2009.
[70]
J. R. Wilson, “Numerical integration of the equations of relativistic hydrodynamics,” in Proceedings of the Marcel Grossman Meeting, R. Ruffini, Ed., p. 393, North Holland, 1977.
[71]
S. S. Komissarov, “Direct numerical simulations of the Blandford-Znajek effect,” Monthly Notices of the Royal Astronomical Society, vol. 326, no. 3, pp. L41–L44, 2001.
[72]
S. Hirose, J. H. Krolik, J.-P. De Villiers, and J. F. Hawley, “Magnetically driven accretion flows in the Kerr metric. II. structure of the magnetic field,” The Astrophysical Journal, vol. 606, no. 2, article 1083, 2004.
[73]
B. R. McNamara, “An energetic agn outburst powered by a rapidly spinning supermassive black hole or an accreting ultramassive black hole,” The Astrophysical Journal, vol. 698, no. 1, article 594, 2009.
[74]
B. R. McNamara, M. Rohanizadegan, and P. E. J. Nulsen, “Are radio active galactic nuclei powered by accretion or black hole spin?” Astrophysical Journal Letters, vol. 727, no. 1, 2011.
[75]
C. A. C. Fernandes, “Evidence for a maximum jet efficiency for the most powerful radio galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 411, no. 3, pp. 1909–1916, 2011.
[76]
B. Punsly, “high jet efficiency and simulations of black hole magnetospheres,” The Astrophysical Journal Letters, vol. 728, no. 1, article L17, 2011.
[77]
A. Tchekhovskoy, R. Narayan, and J. C. McKinney, “Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole,” Monthly Notices of the Royal Astronomical Society Letters, vol. 418, no. 1, pp. L79–L83, 2011.
[78]
J. C. McKinney, A. Tchekhovskoy, and R. D. Blandford, “General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes,” Monthly Notices of the Royal Astronomical Society, vol. 423, no. 4, pp. 3083–3117, 2012.
[79]
A. Tchekhovskoy, J. C. McKinney, and R. Narayan, “General relativistic modeling of magnetized jets from accreting black holes,” Journal of Physics: Conference Series, vol. 372, no. 1, Article ID 012040, 2012.
[80]
K. W. Cavagnolo, B. R. McNamara, M. W. Wise et al., “A powerful AGN outburst in RBS 797,” The Astrophysical Journal, vol. 732, no. 2, article 71, 2011.
[81]
S. S. Doeleman, V. L. Fish, D. E. Schenck et al., “Jet-launching structure resolved near the supermassive black hole in M87,” Science, vol. 338, no. 6105, pp. 355–358, 2012.
[82]
Allen, “The relation between accretion rate and jet power in X-ray luminous elliptical galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 372, no. 1, pp. 21–30, 2006.
[83]
D. Garofalo, “The spin dependence of the blandford-znajek effect,” Astrophysical Journal Letters, vol. 699, no. 1, pp. 400–408, 2009.
[84]
T. K. Das, S. Nag, S. Hegde et al., “Behaviour of low angular momentum relativistic accretion close to the event horizon,” http://arxiv.org/abs/1211.6952.
[85]
M. Nakamura, D. Garofalo, and D. L. Meier, “A magnetohydrodynamic model of the M87 jet. i. superluminal knot ejections from HST-1 as trails of quad relativistic MHD shocks,” The Astrophysical Journal, vol. 721, no. 2, article 1783, 2010.
[86]
P. Polko, D. L. Meier, and S. Markoff, “Determining the optimal locations for shock acceleration in magnetohydrodynamical jets,” Astrophysical Journal Letters, vol. 723, no. 2, pp. 1343–1350, 2010.
[87]
R. P. Fender, E. Gallo, and D. Russell, “No evidence for black hole spin powering of jets in X-ray binaries,” Monthly Notices of the Royal Astronomical Society, vol. 406, no. 3, pp. 1425–1434, 2010.
[88]
R. Narayan and J. E. McClintock, “Observational evidence for a correlation between jet power and black hole spin,” Monthly Notices of the Royal Astronomical Society Letters, vol. 419, no. 1, pp. L69–L73, 2012.
[89]
A. Tchekhovskoy, R. Narayan, and J. C. McKinney, “Black hole spin and the radio loud/quiet dichotomy of active galactic nuclei,” Astrophysical Journal Letters, vol. 711, no. 1, pp. 50–63, 2010.
[90]
J. E. McClintock, R. Narayan, S. W. Davis et al., “Measuring the spins of accreting black holes,” Classical and Quantum Gravity, vol. 28, no. 11, article 114009, 2011.
[91]
J. Neilsen and J. C. Lee, “Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105,” Nature, vol. 458, pp. 481–484, 2009.
[92]
G. Ponti, R. P. Fender, M. C. Begelman, R. J. H. Dunn, J. Neilsen, and M. Coriat, “Ubiquitous equatorial accretion disc winds in black hole soft states,” Monthly Notices of the Royal Astronomical Society Letters, vol. 422, no. 1, pp. L11–L15, 2012.
[93]
A. R. King, J. E. Pringle, and J. A. Hoffman, “The evolution of black hole mass and spin in active galactic nuclei,” Monthly Notices of the Royal Astronomical Society, vol. 385, no. 3, pp. 1621–1627, 2008.
[94]
A. Zoghbi, A. C. Fabian, P. Uttley et al., “Broad iron L line and X-ray reverberation in 1H0707-495,” Monthly Notices of the Royal Astronomical Society, vol. 401, no. 4, pp. 2419–2432, 2010.
[95]
L. W. Brenneman, C. S. Reynolds, M. A. Nowak et al., “THE spin of the supermassive black hole in NGC 3783,” The Astrophysical Journal, vol. 736, no. 2, article 103, 2011.
[96]
S. Komossa, W. Voges, D. Xu et al., “Radio-loud narrow-line type 1 Quasars,” Astronomical Journal, vol. 132, no. 2, pp. 531–545, 2006.
[97]
L. Foschini, “Gamma-ray emission from Narrow-Line Seyfert 1 galaxies and implications on the jets unification,” AIP Conference Proceedings, vol. 1505, pp. 574–577, 2012.
[98]
L. Foschini, “Powerful relativistic jets in spiral galaxies,” International Journal of Modern Physics, vol. 8, pp. 172–177, 2012.
[99]
D. L. Meier, “Ohm's law in the fast lane: general relativistic charge dynamics,” The Astrophysical Journal, vol. 605, no. 1, article 340, 2004.
[100]
J. A. Font, “Numerical hydrodynamics and magnetohydrodynamics in general relativity,” Living Reviews in Relativity, vol. 11, article 7, 2008.
[101]
N. Bucciantini and L. Del Zanna, “A fully covariant mean-field dynamo closure for numerical 3 + 1 resistive GRMHD,” Monthly Notices of the Royal Astronomical Society, vol. 428, no. 1, pp. 71–85, 2013.
[102]
R. Krasnopolsky, Z. Y. Li, and H. Shang, “Disk formation enabled by enhanced resistivity,” Astrophysical Journal Letters, vol. 716, no. 2, pp. 1541–1550, 2010.
[103]
R. Krasnopolsky, Z.-Y. Li, and H. Shang, “Disk formation in magnetized clouds enabled by the hall effect,” The Astrophysical Journal, vol. 733, no. 1, article 54, 2011.
[104]
S. Koide and K. Arai, “Energy extraction from a rotating black hole by magnetic reconnection in the ergosphere,” Astrophysical Journal Letters, vol. 682, no. 2, pp. 1124–1133, 2008.
[105]
S. Koide, “Generalized general relativistic magnetohydrodynamic equations and distinctive plasma dynamics around rotating black holes,” The Astrophysical Journal, vol. 798, no. 2, article 1459, 2010.
[106]
G. L. Eyink, “Stochastic flux freezing and magnetic dynamo,” Physical Review E, vol. 83, no. 5, article 056405, 25 pages, 2011.
[107]
E. G. Blackman, “Accretion disks and dynamos: toward a unified mean field theory,” Physica Scripta, vol. 86, no. 5, Article ID 058202, 2012.
[108]
K. Beckwith, J. F. Hawley, and J. H. Krolik, “The influence of magnetic field geometry on the evolution of black hole accretion flows: similar disks, drastically different jets,” The Astrophysical Journal, vol. 678, no. 2, 1180, 2008.
[109]
J. C. McKinney and R. D. Blandford, “Stability of relativistic jets from rotating, accreting black holes via fully three-dimensional magnetohydrodynamic simulations,” Monthly Notices of the Royal Astronomical Society Letters, vol. 394, no. 1, pp. L126–L130, 2009.
[110]
M. Balokovic, “Disclosing the radio loudness distribution dichotomy in quasars: an unbiased Monte Carlo approach applied to the SDSS-first quasar sample,” The Astrophysical Journal, vol. 750, no. 1, article 30, 2012.
[111]
L. Ballo, F. J. H. Heras, X. Barcons, and F. J. Carrera, “Exploring X-ray and radio emission of type 1 AGN up to z ~ 2.3,” Astronomy & Astrophysics, vol. 545, article 66, 15 pages, 2012.
[112]
J. E. Barnes and L. E. Hernquist, “Fueling starburst galaxies with gas-rich mergers,” Astrophysical Journal Letters, vol. 370, no. 2, pp. L65–L68, 1991.
[113]
B. H. C. Emonts, R. Morganti, C. Struve et al., “Large-scale H i in nearby radio galaxies-II. The nature of classical low-power radio sources,” Monthly Notices of the Royal Astronomical Society, vol. 406, no. 2, pp. 987–1006, 2010.
[114]
C. P. O'Dea, R. A. Daly, P. Kharb, K. A. Freeman, and S. A. Baum, “Physical properties of very powerful FRII radio galaxies,” Astronomy & Astrophysics, vol. 494, no. 2, article 488, 2009.
[115]
F. Tombesi, R. M. Sambruna, J. N. Reeves et al., “Discovery of ultra-fast outflows in a sample of broad-line radio galaxies observed with SsUZAKU,” The Astrophysical Journal, vol. 719, no. 1, article 700, 2010.
[116]
F. Tombesi, M. Cappi, J. N. Reeves et al., “Evidence for ultra-fast outflows in radio-quiet AGNs,” Astronomy & Astrophysics, vol. 521, article A57, 35 pages, 2010.
[117]
A. Perego, M. Dotti, M. Colpi, and M. Volonteri, “Mass and spin co-evolution during the alignment of a black hole in a warped accretion disc,” Monthly Notices of the Royal Astronomical Society, vol. 399, no. 4, pp. 2249–2263, 2009.
[118]
D. J. E. Floyd, J. S. Dunlop, M. J. Kukula et al., “Star formation in luminous quasar host galaxies at z = 1 ? 2,” Monthly Notices of the Royal Astronomical Society, vol. 429, no. 1, pp. 2–19, 2013.
[119]
E. T. Meyer, “From the blazar sequence to the blazar envelope: revisiting the relativistic jet dichotomy in radio-loud active galactic nuclei,” The Astrophysical Journal, vol. 740, no. 2, article 98, 2011.