全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Mitchell Spectrograph: Studying Nearby Galaxies with the VIRUS Prototype

DOI: 10.1155/2013/641612

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Mitchell Spectrograph (a.k.a. VIRUS-P) on the 2.7?m Harlan J. Smith telescope at McDonald Observatory is currently the largest field of view (FOV) integral field unit (IFU) spectrograph in the world ( ). It was designed as a prototype for the highly replicable VIRUS spectrograph which consists of a mosaic of IFUs spread over a diameter FOV feeding 150 spectrographs similar to the Mitchell. VIRUS will be deployed on the 9.2 meter Hobby-Eberly Telescope (HET) and will be used to conduct the HET Dark Energy Experiment (HETDEX). Since seeing first light in 2007 the Mitchell Spectrograph has been widely used, among other things, to study nearby galaxies in the local universe where their internal structure and the spatial distribution of different physical parameters can be studied in great detail. These observations have provided important insight into many aspects of the physics behind the formation and evolution of galaxies and have boosted the scientific impact of the 2.7 meter telescope enormously. Here I review the contributions of the Mitchell Spectrograph to the study of nearby galaxies, from the investigation the spatial distribution of dark matter and the properties of supermassive black holes, to the studies of the process of star formation and the chemical composition of stars and gas in the ISM, which provide important information regarding the formation and evolution of these systems. I highlight the fact that wide field integral field spectrographs on small and medium size telescopes can be powerful cost effective tools to study the astrophysics of galaxies. Finally I briefly discuss the potential of HETDEX for conducting studies on nearby galaxies. The survey parameters make it complimentary and competitive to ongoing and future surveys like SAMI and MANGA. 1. Introduction The Mitchell Spectrograph (a.k.a. VIRUS-P) was commissioned in early 2007 on the 2.7?m Harlan J. Smith telescope at McDonald Observatory. It is owned and operated by the University of Texas at Austin and was designed as a prototype for the Visible Integral Field Replicable Unit Spectrograph (VIRUS; [1]), a massively replicated fiber-fed IFU spectrograph for the 9.2?m Hobby-Eberly Telescope (HET). VIRUS consists of a mosaic of 75 50′′ × 50′′ IFUs spread regularly with a 1/4 filling factor over a diameter field of view. The IFUs themselves have a 1/3 filling factor and feed 150 spectrographs similar to the Mitchell Spectrograph. VIRUS will be used to conduct the HET Dark Energy Experiment (HETDEX; [2–4]), a large (~90? ) blind integral field spectroscopic survey aimed at

References

[1]  G. J. Hill, S. E. Tuttle, H. Lee, et al., “VIRUS: production of a massively replicated 33k fiber integral field spectrograph for the upgraded Hobby-Eberly telescope,” in Ground-Based and Airborne Instrumentation for Astronomy IV, vol. 8446 of Proceedings of SPIE, September 2012.
[2]  G. J. Hill, K. Gebhardt, E. Komatsu, et al., “The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX): description and early pilot survey results,” in Panoramic Views of Galaxy Formation and Evolution, T. Kodama, T. Yamada, and K. Aoki, Eds., vol. 399 of ASP Conference Series, pp. 115–118, Astronomical Society of the Pacific, San Francisco, Calif, USA, 2008.
[3]  J. J. Adams, G. A. Blanc, G. J. Hill, K. Gebhardt, N. Drory, and L. Hao, “The HETDEX pilot survey—I. Survey design, performance, and catalog of emission-line galaxies,” The Astrophysical Journal Supplement Series, vol. 192, no. 1, p. 5, 2011.
[4]  G. A. Blanc, J. J. Adams, K. Gebhardt et al., “The hetdex pilot survey. II. the evolution of the Lyα escape fraction from the ultraviolet slope and luminosity function of 1.9 < z < 3.8 LAEs,” The Astrophysical Journal, vol. 736, no. 1, article 31, 21 pages, 2011.
[5]  J. J. Adams, G. J. Hill, and P. J. MacQueen, “B2 0902+34: a collapsing protogiant elliptical galaxy at z = 3.4,” The Astrophysical Journal, vol. 694, no. 1, pp. 314–326, 2009.
[6]  R. Ciardullo, C. Gronwall, J. J. Adams, et al., “The Hetdex Pilot Survey. IV. The evolution of emitting galaxies from z ~ 0.5 to z ~ 0,” The Astrophysical Journal, vol. 769, no. 1, article 83, 2013.
[7]  T. Chonis, G. Blanc, G. Hill, et al., 2013, arxiv??????
[8]  K. Gebhardt, J. Adams, D. Richstone et al., “The black hole mass in M87 from Gemini/NIFS adaptive optics observations,” The Astrophysical Journal, vol. 729, no. 2, article 119, 2011.
[9]  N. J. McConnell, C. P. Ma, K. Gebhardt, et al., “Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies,” Nature, vol. 480, pp. 215–218, 2011.
[10]  N. J. McConnell, C. P. Ma, J. D. Murphy, et al., “Dynamical measurements of black hole masses in four brightest cluster galaxies at 100?Mpc,” The Astrophysical Journal, vol. 756, no. 2, article 179, 2012.
[11]  N. J. McConnell, S. F. S. Chen, C. P. Ma, J. E. Greene, T. R. Lauer, and K. Gebhardt, “The effect of spatial gradients in Stellar mass-to-light ratio on black hole mass measurements,” The Astrophysical Journal, vol. 768, no. 1, article L21, 2013.
[12]  J. D. Murphy, K. Gebhardt, and J. J. Adams, “Galaxy kinematics with VIRUS-P: the dark matter halo of M87,” The Astrophysical Journal, vol. 729, no. 2, aricle 129, 2011.
[13]  J. J. Adams, K. Gebhardt, G. A. Blanc et al., “The central dark matter distribution of NGC2976,” The Astrophysical Journal, vol. 745, no. 1, article 92, 17 pages, 2012.
[14]  J. J. Adams, J. M. Uson, G. J. Hill, and P. J. Macqueen, “A new z = 0 metagalactic ultraviolet background limit,” The Astrophysical Journal, vol. 728, no. 2, article 107, 15 pages, 2011.
[15]  L. M. Cairós, N. Caon, B. G. Lorenzo et al., “Mapping luminous blue compact galaxies with VIRUS-P,” Astronomy & Astrophysics, vol. 547, article A24, 15 pages, 2012.
[16]  G. A. Blanc, A. Schruba, N. J. Evans II, et al., “The VIRUS-P exploration of nearby galaxies (VENGA): the gradient in Ngc 628,” The Astrophysical Journal, vol. 764, no. 2, article 117, 2013.
[17]  G. A. Blanc, A. Heiderman, K. Gebhardt, N. J. Evans, and J. Adams, “The spatially resolved star formation law from integral field spectroscopy: VIRUS-P observations of NGC 5194,” The Astrophysical Journal, vol. 704, no. 1, pp. 842–862, 2009.
[18]  A. L. Heiderman, N. J. Evans, N. J. II, K. Gebhardt, et al., “New horizons in astronomy,” in Proceedings of the Frank N. Bash Symposium on New Horizons in Astronomy (BASH '11), S. Salviander, J. Green, and A. Pawlik, Eds., Austin, Tex, USA, October 2011.
[19]  P. Yoachim, R. Roskar, and V. P. Debattista, “Integral field unit spectroscopy of the stellar disk truncation region of NGC 6155,” The Astrophysical Journal, vol. 716, no. 1, pp. L4–L8, 2010.
[20]  P. Yoachim, R. Ro?kar, and V. P. Debattista, “Spatially resolved spectroscopic star formation histories of nearby disks: hints of stellar migration,” The Astrophysical Journal, vol. 752, no. 2, article 97, 2012.
[21]  J. E. Greene, J. D. Murphy, J. M. Comerford, K. Gebhardt, and J. J. Adams, “The stellar halos of massive elliptical galaxies,” The Astrophysical Journal, vol. 750, no. 1, p. 32, 2012.
[22]  R. Bacon, Y. Copin, G. Monnet et al., “The SAURON project—I. The panoramic integral-field spectrograph,” Monthly Notices of the Royal Astronomical Society, vol. 326, no. 1, pp. 23–35, 2001.
[23]  A. Kelz, M. A. W. Verheijen, M. M. Roth et al., “PMAS: the potsdam multi-aperture spectrophotometer. II. The wide integral field unit PPak,” Publications of the Astronomical Society of the Pacific, vol. 118, no. 839, pp. 129–145, 2006.
[24]  M. A. Bershady, D. R. Andersen, J. Harker, L. W. Ramsey, and M. A. W. Verheijen, “Sparsepak: a formatted fiber field unit for the WIYN telescope bench spectrograph. I. Design, construction, and calibration,” Publications of the Astronomical Society of the Pacific, vol. 116, no. 820, pp. 565–590, 2004.
[25]  P. T. de Zeeuw, M. Bureau, E. Emsellem et al., “The SAURON project—II. Sample and early results,” Monthly Notices of the Royal Astronomical Society, vol. 329, no. 3, pp. 513–530, 2002.
[26]  M. Cappellari, E. Emsellem, D. Krajnovi?, et al., “The ATLAS3D project—I. A volume-limited sample of 260 nearby early-type galaxies: science goals and selection criteria,” Monthly Notices of the Royal Astronomical Society, vol. 413, pp. 813–836, 2011.
[27]  F. F. Rosales-Ortega, R. C. Kennicutt Jr., S. F. Sánchez, et al., “PINGS: the PPAK IFS nearby galaxies survey,” Monthly Notices of the Royal Astronomical Society, vol. 405, no. 12, pp. 735–758, 2010.
[28]  S. F. Sánchez, R. C. Kennicutt Jr., A. G. de Paz, et al., “CALIFA, The Calar Alto Legacy Integral Field Area Survey,” Astronomy & Astrophysics, vol. 538, article A8, 31 pages, 2012.
[29]  G. A. Blanc, T. Weinzirl, M. Song, et al., “The VIRUS-P Exploration of Nearby Galaxies (VENGA): survey design, data processing, and spectral analysis methods,” The Astronomical Journal, vol. 145, no. 5, p. 138, 2013.
[30]  G. J. Hill, P. J. MacQueen, M. P. Smith, et al., “Design, construction, and performance of VIRUS-P: the prototype of a highly replicated integral-field spectrograph for HET,” in Ground-Based and Airborne Instrumentation for Astronomy II, vol. 7014 of Proceedings of the SPIE, Marseille, France, June 2008.
[31]  D. Thomas, C. Maraston, and R. Bender, “Stellar population models of Lick indices with variable element abundance ratios,” Monthly Notices of the Royal Astronomical Society, vol. 339, no. 3, pp. 897–911, 2003.
[32]  G. J. Graves and R. P. Schiavon, “Measuring ages and elemental abundances from unresolved stellar populations: Fe, Mg, C, N, and Ca,” The Astrophysical Journal Supplement Series, vol. 177, no. 2, pp. 446–464, 2008.
[33]  S. E. Strom, K. M. Strom, J. W. Goad, F. J. Vrba, and W. Rice, “Color and metallicity gradients in E and S0 galaxies,” The Astrophysical Journal, vol. 204, part 1, pp. 684–693, 1976.
[34]  P. Sánchez-Blázquez, D. A. Forbes, J. Strader, J. Brodie, and R. Proctor, “Spatially resolved spectroscopy of early-type galaxies over a range in mass,” Monthly Notices of the Royal Astronomical Society, vol. 377, no. 2, pp. 759–786, 2007.
[35]  A.-M. Weijmans, M. Cappellari, R. Bacon et al., “Stellar velocity profiles and line strengths out to four effective radii in the early-type galaxies NGC 3379 and 821,” Monthly Notices of the Royal Astronomical Society, vol. 398, no. 2, pp. 561–574, 2009.
[36]  I. Trujillo, G. Feulner, Y. Goranova et al., “Extremely compact massive galaxies at z ~ 1.4,” Monthly Notices of the Royal Astronomical Society, vol. 373, no. 1, pp. L36–L40, 2006.
[37]  P. G. van Dokkum, M. Franx, M. Kriek, et al., “Confirmation of the remarkable compactness of massive quiescent galaxies at z ~ 2.3: early-type galaxies did not form in a simple monolithic collapse,” The Astrophysical Journal, vol. 677, no. 1, pp. L5–L8, 2008.
[38]  T. Naab, P. H. Johansson, and J. P. Ostriker, “Minor mergers and the size evolution of elliptical galaxies,” The Astrophysical Journal, vol. 699, no. 2, pp. L178–L182, 2009.
[39]  S. Huang, L. C. Ho, C. Y. Peng, Z.-Y. Li, and A. J. Barth, “Fossil evidence for the two-phase formation of elliptical galaxies,” The Astrophysical Journal, vol. 768, no. 2, article L28, 2013.
[40]  R. Bender, D. Burstein, and S. M. Faber, “Dynamically hot galaxies. II. Global stellar populations,” The Astrophysical Journal, vol. 411, no. 1, pp. 153–169, 1993.
[41]  S. C. Trager, S. M. Faber, G. Worthey, and J. J. González, “The stellar population histories of early-type galaxies. II. Controlling parameters of the stellar populations,” Astronomical Journal, vol. 120, no. 1, pp. 165–188, 2000.
[42]  G. J. Graves, S. M. Faber, R. P. Schiavon, and R. Yan, “Ages and abundances of red sequence galaxies as a function of liner emission-line strength,” The Astrophysical Journal, vol. 671, no. 1, pp. 243–271, 2007.
[43]  C. Kobayashi, “GRAPE-SPH chemodynamical simulation of elliptical galaxies—I. Evolution of metallicity gradients,” Monthly Notices of the Royal Astronomical Society, vol. 347, pp. 740–758, 2004.
[44]  M. Pohlen and I. Trujillo, “The structure of galactic disks: studying late-type spiral galaxies using SDSS,” Astronomy and Astrophysics, vol. 454, no. 3, pp. 759–772, 2006.
[45]  C. L. Martin and R. C. Kennicutt Jr., “Star formation thresholds in galactic disks,” The Astrophysical Journal, vol. 555, no. 1, pp. 301–321, 2001.
[46]  F. Bigiel, A. Leroy, F. Walter et al., “Extremely inefficient star formation in the outer disks of nearby galaxies,” Astronomical Journal, vol. 140, no. 5, pp. 1194–1213, 2010.
[47]  A. Schruba, A. K. Leroy, F. Walter et al., “A molecular star formation law in the atomic-gas-dominated regime in nearby galaxies,” Astronomical Journal, vol. 142, no. 2, p. 37, 2011.
[48]  J. A. Sellwood and J. J. Binney, “Radial mixing in galactic discs,” Monthly Notices of the Royal Astronomical Society, vol. 336, no. 3, pp. 785–796, 2002.
[49]  R. Ro?kar, V. P. Debattista, G. S. Stinson, T. R. Quinn, T. Kaufmann, and J. Wadsley, “Beyond inside-out growth: formation and evolution of disk outskirts,” The Astrophysical Journal, vol. 675, no. 2, article L65, 2008.
[50]  P. Serra and S. C. Trager, “On the interpretation of the age and chemical composition of composite stellar populations determined with line-strength indices,” Monthly Notices of the Royal Astronomical Society, vol. 374, no. 3, pp. 769–774, 2007.
[51]  C. R. Fernandes, A. Mateus, L. Sodré Jr., G. Stasińska, and J. M. Gomes, “Semi-empirical analysis of sloan digital sky survey galaxies—I. Spectral synthesis method,” Monthly Notices of the Royal Astronomical Society, vol. 358, no. 2, pp. 363–378, 2005.
[52]  P. Ocvirk, C. Pichon, A. Lan?on, and E. Thiebaut, “STECKMAP: Stellar content and Kinematics from high resolution galactic spectra via Maximum A Posteriori,” Monthly Notices of the Royal Astronomical Society, vol. 365, no. 1, pp. 74–84, 2006.
[53]  K. Gebhardt, R. Bender, G. Bower et al., “A relationship between nuclear black hole mass and galaxy velocity dispersion,” The Astrophysical Journal, vol. 539, no. 1, pp. L13–L16, 2000.
[54]  L. Ferrarese and D. Merritt, “A fundamental relation between supermassive black holes and their host galaxies,” The Astrophysical Journal, vol. 539, no. 1, pp. L9–L12, 2000.
[55]  J. Kormendy and L. C. Ho, “Coevolution (or not) of supermassive black holes and host galaxies,” Annual Review of Astronomy and Astrophysics, vol. 51, pp. 511–653, 2013.
[56]  B. Robertson, L. Hernquist, T. J. Cox et al., “The evolution of the MBH-σ relation,” The Astrophysical Journal, vol. 641, no. 1, pp. 90–102, 2006.
[57]  C. Y. Peng, “What do statistics reveal about the M ~ B ~ H-M ~ b ~ u ~ l ~ g ~ e correlation and co-evolution?” in Proceedings of the 267th International Astronomical Union Symposium, pp. 161–171, 2010.
[58]  J. F. Navarro, C. S. Frenk, and S. D. M. White, “The structure of cold dark matter halos,” The Astrophysical Journal, vol. 462, no. 2, pp. 563–575, 1996.
[59]  J. D. Simon, A. D. Bolatto, A. Leroy, and L. Blitz, “High-resolution measurements of the dark matter halo of NGC 2976: evidence for a shallow density profile,” The Astrophysical Journal, vol. 596, no. 2, pp. 957–981, 2003.
[60]  W. J. G. de Blok, F. Walter, E. Brinks, C. Trachternach, S.-H. Oh, and R. C. Kennicutt Jr., “High-resolution rotation curves and galaxy mass models from things,” Astronomical Journal, vol. 136, no. 6, pp. 2648–2719, 2008.
[61]  R. C. Kennicutt Jr., S.-H. Oh, W. J. G. de Blok, E. Brinks, and F. Walter, “Dark and luminous matter in things dwarf galaxies,” Astronomical Journal, vol. 141, no. 6, p. 193, 2011.
[62]  M. Cappellari, “Measuring the inclination and mass-to-light ratio of axisymmetric galaxies via anisotropic Jeans models of stellar kinematics,” Monthly Notices of the Royal Astronomical Society, vol. 390, no. 1, pp. 71–86, 2008.
[63]  D. Krajnovic, M. Cappellari, P. T. de Zeeuw, and Y. Copin, “Kinemetry: a generalization of photometry to the higher moments of the line-of-sight velocity distribution,” Monthly Notices of the Royal Astronomical Society, vol. 366, no. 3, pp. 787–802, 2006.
[64]  D. H. Rogstad, I. A. Lockhart, and M. C. H. Wright, “Aperture-synthesis observations of H I in the galaxy M83,” The Astrophysical Journal, vol. 193, pp. 309–319, 1974.
[65]  E. Emsellem, M. Cappellari, R. F. Peletier et al., “The SAURON project—III. Integral-field absorption-line kinematics of 48 elliptical and lenticular galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 352, no. 3, pp. 721–743, 2004.
[66]  M. Schwarzschild, “A numerical model for a triaxial stellar system in dynamical equilibrium,” The Astrophysical Journal, vol. 232, pp. 236–247, 1979.
[67]  K. Gebhardt, D. Richstone, S. Tremaine et al., “Axisymmetric dynamical models of the central regions of galaxies,” The Astrophysical Journal, vol. 583, no. 1, pp. 92–115, 2003.
[68]  K. Gebhardt and J. Thomas, “The black hole mass, stellar mass-to-light ratio, and Dark Halo in m87,” The Astrophysical Journal, vol. 700, no. 2, pp. 1690–1701, 2009.
[69]  D. E. Osterbrock and G. J. Ferland, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, University Science Books, Sausalito, Calif, USA, 2nd edition, 2006.
[70]  R. C. Kennicutt Jr., “The global schmidt law in star-forming galaxies,” The Astrophysical Journal, vol. 498, no. 2, pp. 541–552, 1998.
[71]  R. C. Kennicutt Jr., D. Calzetti, F. Walter, et al., “Star formation in NGC 5194 (M51a). II. The spatially resolved star formation law,” The Astrophysical Journal, vol. 671, no. 1, article 333, 2007.
[72]  F. Bigiel, A. Leroy, F. Walter et al., “The star formation law in nearby galaxies on SUB-KPC scales,” Astronomical Journal, vol. 136, no. 6, pp. 2846–2871, 2008.
[73]  G. Liu, J. Koda, D. Calzetti, M. Fukuhara, and R. Momose, “The super-linear slope of the spatially resolved star formation law in NGC 3521 and NGC 5194 (M51a),” The Astrophysical Journal, vol. 735, no. 1, article 63, 2011.
[74]  N. Rahman, A. D. Bolatto, R. Xue et al., “Carma Survey Toward Infrared-Bright Nearby Galaxies (STING). II. Molecular gas star formation law and depletion time across the blue sequence,” The Astrophysical Journal, vol. 745, no. 2, article 183, 2012.
[75]  R. Shetty, B. C. Kelly, and F. Bigiel, “Evidence for a non-universal Kennicutt-Schmidt relationship using hierarchical Bayesian linear regression,” Monthly Notices of the Royal Astronomical Society, vol. 430, no. 1, pp. 288–304, 2013.
[76]  M. R. Krumholz, C. F. McKee, and J. Tumlinson, “The star formation law in atomic and molecular gas,” The Astrophysical Journal, vol. 699, no. 1, pp. 850–856, 2009.
[77]  F. Renaud, K. Kraljic, and F. Bournaud, “Star formation laws and thresholds from ISM structure and turbulence,” The Astrophysical Journal, vol. 760, no. 1, article L16, 2012.
[78]  I. A. Bonnell, C. L. Dobbs, and R. J. Smith, “Shocks, cooling and the origin of star formation rates in spiral galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 430, no. 3, pp. 1790–1800, 2013.
[79]  A. K. Leroy, F. Walter, K. Sandstrom, et al., “Molecular gas and star formation in nearby disk galaxies,” The Astronomical Journal, vol. 146, no. 2, p. 19, 2013.
[80]  A. Schruba, A. K. Leroy, F. Walter, K. Sandstrom, and E. Rosolowsky, “The scale dependence of the molecular gas depletion time in M33,” The Astrophysical Journal, vol. 722, no. 2, pp. 1699–1706, 2010.
[81]  R. Shetty and E. C. Ostriker, “Maximally star-forming galactic disks. II. Vertically resolved hydrodynamic simulations of starburst regulation,” The Astrophysical Journal, vol. 754, no. 1, article 2, 2012.
[82]  G. A. Blanc, K. Gebhardt, A. L. Heiderman et al., “The VIRUS-P Exploration of Nearby Galaxies (VENGA): survey design and first results,” in Proceedings of the 3rd Biennial Frank N. Bash Symposium on New Horizons in Astronomy (BASH '09), vol. 432, pp. 180–186, Austin, Tex, USA, October 2009.
[83]  F. Walter, E. Brinks, W. J. G. de Blok et al., “Things: the Hi nearby galaxy survay,” Astronomical Journal, vol. 136, no. 6, pp. 2563–2647, 2008.
[84]  T. T. Helfer, M. D. Thornley, M. W. Regan et al., “The BIMA survey of nearby galaxies (BIMA song). II. The CO data,” The Astrophysical Journal Supplement Series, vol. 145, no. 2, pp. 259–327, 2003.
[85]  A. D. Bolatto, M. Wolfire, and A. K. Leroy, “The CO-to-H2 conversion factor,” Annual Review of Astronomy and Astrophysics, vol. 51, pp. 207–268, 2013.
[86]  D. Narayanan, M. R. Krumholz, E. C. Ostriker, and L. Hernquist, “A general model for the CO-H2 conversion factor in galaxies with applications to the star formation law,” Monthly Notices of the Royal Astronomical Society, vol. 421, no. 4, pp. 3127–3146, 2012.
[87]  R. Feldmann, N. Y. Gnedin, and A. V. Kravtsov, “The x-factor in galaxies. I. Dependence on environment and scale,” The Astrophysical Journal, vol. 747, no. 2, article 124, 2012.
[88]  P. Robertson, G. A. Shields, and G. A. Blanc, “Enhanced abundances in spiral galaxies of the Pegasus I Cluster,” The Astrophysical Journal, vol. 748, no. 1, article 48, 2012.
[89]  D. Zaritsky, R. C. Kennicutt Jr., and J. P. Huchra, “H II regions and the abundance properties of spiral galaxies,” The Astrophysical Journal, vol. 420, no. 1, pp. 87–109, 1994.
[90]  L. Levy, J. A. Rose, J. H. van Gorkom, and B. Chaboyer, “The effect of cluster environment on galaxy evolution in the Pegasus I Cluster,” Astronomical Journal, vol. 133, no. 3, pp. 1104–1124, 2007.
[91]  E. D. Skillman, R. C. Kennicutt Jr., G. A. Shields, and D. Zaritsky, “Chemical abundances in virgo spiral galaxies. II. Effects of cluster environment,” The Astrophysical Journal, vol. 462, no. 1, pp. 147–162, 1996.
[92]  C. A. Tremonti, T. M. Heckman, G. Kauffmann et al., “The origin of the mass-metallicity relation: insights from 53,000 star-forming galaxies in the sloan digital sky survey,” The Astrophysical Journal, vol. 613, no. 2, pp. 898–913, 2004.
[93]  P. Robertson, G. A. Shields, R. Davé, G. A. Blanc, and A. Wright, “Dependence of nebular heavy-element abundance on H I content for spiral galaxies,” The Astrophysical Journal, vol. 773, no. 1, article 4, 2013.
[94]  G. de Vaucouleurs, A. de Vaucouleurs, H. G. Corwin Jr., R. J. Buta, G. Paturel, and P. Fouqué, Third Reference Catalogue of Bright Galaxies. Volume I: Explanations and References, Springer, New York, NY, USA, 1991.
[95]  G. de Vaucouleurs, A. de Vaucouleurs, H. G. Corwin Jr., R. J. Buta, G. Paturel, and P. Fouqué, Third Reference Catalogue of Bright Galaxies. Volume II: Data for galaxies between 0h and 12h, Springer, New York, NY, USA, 1991.
[96]  G. de Vaucouleurs, A. de Vaucouleurs, H. G. Corwin Jr., R. J. Buta, G. Paturel, and P. Fouqué, Third Reference Catalogue of Bright Galaxies. Volume III: Data for galaxies between 12h and 24h, Springer, New York, NY, USA, 1991.
[97]  A. L. Heiderman, et al., in preparation.
[98]  S. M. Croom, J. S. Lawrence, J. Bland-Hawthorn et al., “The Sydney-AAO multi-object integral field spectrograph,” Monthly Notices of the Royal Astronomical Society, vol. 421, no. 1, pp. 872–893, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133