全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Large-Eddy Simulation of the Aerodynamic and Aeroacoustic Performance of a Ventilation Fan

DOI: 10.1155/2013/876973

Full-Text   Cite this paper   Add to My Lib

Abstract:

There are controversial requirements involved in developing numerical methodologies in order to compute the flow in industrial fans. The full resolution of turbulence spectrum in such high-Reynolds number flow configurations entails unreasonably expensive computational costs. The authors applied the study to a large unidirectional axial flow fan unit for tunnel ventilation to operate in the forward direction under ambient conditions. This delivered cooling air to the tunnel under routine operation, or hot gases at 400°C under emergency conditions in the event of a tunnel fire. The simulations were carried out using the open source code OpenFOAM, within which they implemented a very large eddy simulation (VLES) based on one-equation SGS model to solve a transport equation for the modelled (subgrid) turbulent kinetic energy. This subgrid turbulence model improvement is a remedial strategy in VLES of high-Reynolds number industrial flows which are able to tackle the turbulence spectrum’s well-known insufficient resolution. The VLES of the industrial fan permits detecting the unsteady topology of the rotor flow. This paper explores the evolution of secondary flow phenomena and speculates on its influence on the actual load capability when operating at peak-pressure condition. Predicted noise emissions, in terms of sound pressure level spectra, are also compared with experimental results and found to agree within the uncertainty of the measurements. 1. Introduction The selection of the state-of-the-art industrial fan technologies for tunnel ventilation normally fulfills user demands that require high volume flow rates and total pressure rises. As such, the specified operating area falls in several cases within the range ordinarily characterizing mixed flow fans. In addition to these performance requirements, two additional factors contribute to the complexity of design processes of the fan range customized for emergency and routine operating modes [1, 2]. First, the fan must have installation in either a vertical or horizontal layout and, second, the fan range must be able to accommodate the effect of unsteady pressure pulses which the trains generated in ventilation shafts [3–6]. These requirements imply levels of complexity in the design process and diversity in the operations that are significantly beyond the historic norm within the fan industry. Therefore, the application of standard methodologies is inappropriate and significant changes are taking place in the design process of large industrial fans. Although the conventional approach to fan design has

References

[1]  D. Lacroix, “New french recommendations for fire ventilation in road tunnels,” in Proceedings of the 9th International Conference on Aerodynamics and Ventilation of Vehicle Tunnels, pp. 103–1123, Aosta Valley, Italy, 1997.
[2]  C. Carvel, “The effects of ventilation on fires in tunnels,” in Proceedings of the International Tunnel Fire and Safety Conference, Rotterdam, The Netherlands, 1999.
[3]  A. G. Sheard and N. M. Jones, “Emergency ventilation for vehicular, rail and metro tunnels,” in Proceedings of the International Congress Safety Innovation Criteria inside Tunnels, Dijon, Spain, 2005.
[4]  A. G. Sheard and N. M. Jones, “High temperature certification of large fans for emergency ventilation,” in Proceedings of the 12th International Symposium on Aerodynamics and Ventilation of Vehicle Tunnels, pp. 123–140, Portoroz, Slovenia, July 2006.
[5]  A. G. Sheard and N. M. Jones, “Approval of high-temperature emergency tunnel-ventilation fans: the impact of ISO, 21927-3,” in Proceedings of the ITA–AITES World Tunnel Congress and 34th General Assembly, Agra, India, 2008.
[6]  ANSI/ASHRAE Standard 149-2000, Laboratory Methods of Testing Fans Used to Exhaust Smoke in Smoke Management Systems, ANSI/ASHRAE Standard, Atlanta, Ga, USA.
[7]  R. A. Wallis, Axial Flow Fans: Design and Practice, George Newnes, Lynton, UK, 1961.
[8]  B. B. Daily, Woods Practical Guide to Fan Engineering, Woods of Colchester, Birmingham, UK, 1985.
[9]  J. Vad, “Incorporation of forward blade sweep in the non-free vortex design method of axial flow turbomachinery rotors,” Periodica Polytechnica, Mechanical Engineering, vol. 45, no. 2, pp. 217–237, 2001.
[10]  A. Corsini, F. Rispoli, J. Vad, and F. Bencze, “Non-free vortex flow effects in an axial flow rotor,” Periodica Polytechnica, Mechanical Engineering, vol. 45, no. 2, pp. 201–216, 2001.
[11]  K. Y. Lee, Y. S. Choi, Y. L. Kim, and J. H. Yun, “Design of axial fan using inverse design method,” Journal of Mechanical Science and Technology, vol. 22, no. 10, pp. 1883–1888, 2008.
[12]  J. H. Horlock and J. D. Denton, “A review of some early design practice using computational fluid dynamics and a current perspective,” Journal of Turbomachinery, vol. 127, no. 1, pp. 5–13, 2005.
[13]  M. J. Pratt, “Virtual prototypes and product models in mechanical engineering,” in Proceedings of the IFIP WG 5. 10 Workshop on Virtual Environments and Their Applications and Virtual Prototyping, pp. 113–128, 1994.
[14]  U. Jasnoch, H. Kress, and J. Rix, “Towards a virtual prototyping environment,” in Proceedings of the IFIP WG 5. 10 Workshop on Virtual Environments and Their Applications and Virtual Prototyping, pp. 173–183, 1994.
[15]  A. G. Sheard, A. Corsini, S. Minotti, and F. Sciulli, “The role of computational methods in the development of an aero-acoustic design methodology: application to a family of large industrial fans,” CMMF Annual Report, September 2009.
[16]  H. Schneider, D. von Terzi, and H. J. Bauer, “Large-Eddy Simulations of trailing-edge cutback film cooling at low blowing ratio,” International Journal of Heat and Fluid Flow, vol. 31, no. 5, pp. 767–775, 2010.
[17]  M. Labois and D. Lakehal, “Very-large eddy simulation (V-LES) of the flow across a tube bundle,” Nuclear Engineering and Design, vol. 241, pp. 2075–2085, 2011.
[18]  L. Davidson and P. Nielsen, “Large eddy simulations of the flow in a three-dimensional ventilated room,” in Proceedings of the 5th International Conference on Air Distribution in Rooms, pp. 161–168, Yokohama, Japan, 1996.
[19]  N. A. Cumpsty, “Review—a critical review of turbomachinery noise,” Journal of Fluids Engineering, vol. 99, no. 2, pp. 278–293, 1977.
[20]  J. H. Miles, “Procedure for separating noise sources in measurements of turbofan engine core noise,” in Proceedings of the 12th AIAA/CEAS Aeroacoustics Conference, pp. 2249–2264, May 2006.
[21]  J. E. Ffowks Williams and D. L. Hawkings, “Sound generation by turbulence and surfaces in arbitrary motion,” Philosophical Transactions of the Royal Society of London A, vol. 342, 1969.
[22]  H. Jasak, “OpenFOAM: a year in review,” in Proceedings of the 5th OpenFOAM Workshop, Gothenburg, Sweden, June 2010.
[23]  D. Borello, A. Corsini, F. Rispoli, and A. G. Sheard, “DES of a large industrial fan at design operation,” Journal of Power and Energy. In press.
[24]  D. Borello, A. Corsini, F. Rispoli, and A. G. Sheard, “LES of the aerodynamics and aero-acoustic performance of an industrial fan designed for tunnel ventilation,” ASME Paper GT2012-69046, 2012, submitted to Turbo Expo.
[25]  A. Corsini and F. Rispoli, “Flow analyses in a high-pressure axial ventilation fan with a non-linear eddy-viscosity closure,” International Journal of Heat and Fluid Flow, vol. 26, no. 3, pp. 349–361, 2005.
[26]  D. Borello, K. Hanjalic, and F. Rispoli, “Prediction of cascade flows with innovative second-moment closures,” Journal of Fluids Engineering, vol. 127, no. 6, pp. 1059–1070, 2005.
[27]  D. Borello, K. Hanjalic, and F. Rispoli, “Computation of tip-leakage flow in a linear compressor cascade with a second-moment turbulence closure,” International Journal of Heat and Fluid Flow, vol. 28, no. 4, pp. 587–601, 2007.
[28]  D. Borello, G. Delibra, K. Hanjali?, and F. Rispoli, “Large-eddy simulations of tip leakage and secondary flows in an axial compressor cascade using a near-wall turbulence model,” Proceedings of the Institution of Mechanical Engineers A, vol. 223, no. 6, pp. 645–655, 2009.
[29]  D. Borello, G. Delibra, K. Hanjali?, and F. Rispoli, “HybridLES/RANS study of turbulent flow in a low speed linear compressor cascade with moving casing,” ASME Paper GT2010-23755, 2010.
[30]  G. Delibra, D. Borello, K. Hanjali?, and F. Rispoli, “URANS of flow and endwall heat transfer in a pinned passage relevant to gas-turbine blade cooling,” International Journal of Heat and Fluid Flow, vol. 30, no. 3, pp. 549–560, 2009.
[31]  G. Delibra, D. Borello, K. Hanjali?, and F. Rispoli, “A LES insight into convective mechanism of heat transfer in a wall-bounded pin matrix,” in Proceedings of the 14th International Heat Transfer Conference, Washington, DC, USA.
[32]  M. Lighthill, “On sound generated aerodynamically,” Proceedings of the Royal Society of London A, vol. 211, 1952.
[33]  F. Farassat, “Linear acoustic formulas for calculation of rotating blade noise,” AIAA Journal, vol. 19, no. 9, pp. 1122–1130, 1981.
[34]  S. Bianchi, A. Corsini, and G. Paniagua, “Amplification of the force and tonal noise in transonic HPT,” in Proceedings of the 9th European Turbomachinery Conference, Istanbul, Turkey, 2011.
[35]  Y. Dubief and F. Delcayre, “On coherent-vortex identification in turbulence,” Journal of Turbulence, vol. 1, pp. 11–22, 2000.
[36]  S. Lieblein, “Experimental flow in 2D cascades,” in The Aerodynamic Design of the Axial Flow Compressor, NACA RME 56B03, reprinted as NASA SP36, Chapter 6, 1956.
[37]  D. Borello, A. Corsini, S. Minotti, F. Rispoli, and A. G. Sheard, “U-RANS of a large industrial fan under design and off-design operations,” in Proceedings of the 9th European Turbomachinery Conference, Istanbul, Turkey, March 2011.
[38]  A. Powell, “Theory of vortex sound,” Journal of the Acoustical Society of America, vol. 36, pp. 177–195, 1964.
[39]  N. Curle, “The influence of solid boundaries upon aerodynamic sound,” Proceedings of the Royal Society of London A, vol. 231, pp. 505–514, 1955.
[40]  A. Powell, “Mechanisms of aerodynamic sound production,” AGARD Report 466, 1963.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133