The paper describes a stalldetection criterion based on the use of symmetrised dot pattern (SDP) visual waveform analysis and the stallwarning methodology based on a recently developed analysis. The experimental study explores the capability of the SDP technique to detect the stall incipience and evolution in the presence of low signal-to-noise ratios, that is, a noisy working environment. Moreover, the investigation presents a systematic analysis on the probe position’s influence with respect to the fan section. As such, the SDP technique in combination with an acoustic measurement is able to create a visual pattern that one can use to detect stall from potentially any location around the fan/duct system. 1. Introduction Aerodynamic instability arises when flow rate throttling constrains the operational envelope of fans, blowers, and compressors. To avoid instability, aerodynamicists must provide adequate stability (stall) margin to accommodate inlet distortions, degradation due to wear, throttle transients, and other factors that reduce fan, blower, and compressor stability from the original design baseline. Because aerodynamic stall, resulting in increased alternating aerodynamic loads, is a major potential cause of mechanical failure in axial fan stall, detection techniques have had wide application for many years. Researchers have studied the detection and analysis of the different forms of aerodynamic instability for several decades [1–4]. The standard classification of aerodynamic stalls in axial fans and compressors [5] distinguishes between rotating stall (in which reversed flow regions occur locally) and surge (which is characterised by periodic backflow over the entire annulus involving violent oscillations in the air flow which can result in mechanical failure such as fan blade breakage). The latter is unusual in fan applications due to the system’s insufficient counterpressure. Rotating stall is a mechanism by which the rotor adapts to a reduction in flow rate. This results in circumferentially nonuniform flow patterns rotating in the annulus. In reviewing the evolution of rotating stall, Cumpsty [6] noted that the drop in overall performance can occur as a so-called “progressive stall” or an “abrupt stall.” Engineers usually associated the former with a part-span stall which results in a small performance drop, whereas they associate the latter with a full-span stall and a large drop in performance. Notably, the part-span rotating stall occurs typically in single blade rows [6] and usually leads to more complex disturbances in single-rotor
References
[1]
G. R. Ludwig and J. P. Nenni, “A rotating stall control system for turbojet engines,” ASME paper 76-GT-115, 1976.
[2]
I. J. Day, T. Breuer, J. Escuret, M. Cherrett, and A. Wilson, “Stall inception and the prospects for active control in four high-speed compressors,” Journal of Turbomachinery, vol. 121, no. 1, pp. 18–27, 1999.
[3]
B. H?ss, D. Leinhos, and L. Fottner, “Stall inception in the compressor system of a turbofan engine,” Journal of Turbomachinery, vol. 122, no. 1, pp. 32–44, 2000.
[4]
S. Bianchi, A. Corsini, and A. G. Sheard, “Stall inception, evolution, and control in a low speed axial fan with variable pitch in motion,” Journal of Engineering for Gas Turbines and Power, vol. 134, Article ID 042602, 10 pages, 2012.
[5]
J. T. Gravdahl and O. Egeland, Compressor Surge and Rotating Stall: Modeling and Control, Springer, London, UK, 1999.
[6]
N. A. Cumpsty, “Part-circumference casing treatment and the effect on compressor stall,” ASME paper 89-GT, 1989.
[7]
F. K. Moore, “A theory of rotating stall of multistage compressors, parts I–III,” ASME Journal of Engineering for Power, vol. 106, pp. 313–336, 1984.
[8]
A. Rippl, Experimentelle Untersuchungen zuminstationaren Betriebsverhahen an der Stabilitarsgrenze eines mehrstufigen trans-sonischen Verdichters [Ph.D. thesis], Ruhr-Universitat Bochum, 1995.
[9]
A. G. Sheard and A. Corsini, “The impact of an anti-stall stabilisation ring on industrial fan performance: implications for fan selection,” in Proceedings of the 55th American Society of Mechanical Engineers Turbine and Aeroengine Congress, paper no. GT2011-45187, Vancouver, Canada, June 2011.
[10]
J. D. Paduano, E. M. Greitzer, and A. H. Epstein, “Compression system stability and active control,” Annual Review of Fluid Mechanics, vol. 33, pp. 491–517, 2001.
[11]
Y. Liu, M. Dhingra, and J. V. R. Prasad, “Active compressor stability management via a stall margin control mode,” ASME paper GT2009-60140, 2009.
[12]
S. Bindl, M. St?βel, and R. Niehuis, “Stall detection within the low pressure compressor of a twin-spool turbofan engine by tip flow analysis,” ASME paper GT2009-59032, 2009.
[13]
F. O. Methling, H. Stoff, and F. Grauer, “The prestall behavior of a 4-stage transonic compressor and stall monitoring based on artificial neural networks,” International Journal of Rotating Machinery, vol. 10, pp. 387–399, 2004.
[14]
A. G. Sheard, A. Corsini, and S. Bianchi, “Stall warning in a low-speed axial fan by visualization of sound signals,” Journal of Engineering for Gas Turbines and Power, vol. 133, no. 4, Article ID 041601, 2011.
[15]
M. Tryfonidis, O. Etchevers, J. D. Paduano, A. H. Epstein, and G. J. Hendricks, “Prestall behavior of several high-speed compressors,” Journal of Turbomachinery, vol. 117, no. 1, pp. 62–80, 1995.
[16]
D. Christensen, P. Cantin, D. Gutz et al., “Development and demonstration of a stability management system for gas turbine engines,” ASME paper GT2006-90324, 2006.
[17]
Z. Tong, L. Li, C. Nie, B. Lin, Y. Cui, and W. Qi, “On-line stall control with the digital signal processing method in an axial compressor,” ASME paper GT2009-59509, 2009.
[18]
N. Tahara, M. Kurosaki, Y. Ohta, E. Outa, T. Nakajima, and T. Nakakita, “Early stall warning technique for axial-flow compressors,” Journal of Turbomachinery, vol. 129, no. 3, pp. 448–456, 2007.
[19]
F. A. E. Breugelmans, C. Palomba, and T. Funk, “Application of strange attractors to the problem of rotating stall,” in Unsteady Aerodynamics and Aeroelasticity in Turbomachinery, Y. Tanida and M. Namba, Eds., Elsevier Science, 1995.
[20]
F. Takens, “Detecting strange attractors in turbulence,” in Lecture Notes in Mathematics, D. A. Rand and L. S. Young, Eds., Springer, Berlin, Germany, 1981.
[21]
M. M. Bright, E. Qammar, H. Vhora, and M. Schaffer, “Rotating pip detection and stall warning in high-speed compressors using structure function,” in Proceedings of the RTO AVT Symposium, Toulouse, France, May 1998.
[22]
K. Shibata, A. Takahashi, and T. Shirai, “Fault diagnosis of rotatine machinery through visualisation of sound signals,” Mechanical Systems and Signal Processing, vol. 14, pp. 229–241, 2000.
[23]
J. Wu and C. Chuang, “Fault diagnosis of internal combustion engines using visual dot patterns of acoustic and vibration signals,” NDT&E International, vol. 38, pp. 605–614, 2005.
[24]
A. G. Sheard, A. Corsini, and S. Bianchi, “Method of detecting stall in an axial fan,” British Patent application no. P 10896 GB, application date 1 March, 2010.
[25]
S. Bianchi, A. Corsini, F. Rispoli, and A. G. Sheard, “Detection of aerodynamic noise sources in low-speed axial fans with tip end-plates,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 223, no. 6, pp. 1379–1392, 2009.
[26]
C. A. Pickover, “On the use of symmetrized dot patterns for the visual characterization of speech waveforms and other sampled data,” The Journal of the Acoustical Society of America, vol. 80, no. 3, pp. 955–960, 1986.
[27]
T. J. Schultz, “Synthesis of social surveys on noise annoyance,” Journal of the Acoustical Society of America, vol. 64, pp. 377–405, 1978.
[28]
R. Sottek and K. Genuit, “Sound quality evaluation of fan noise based on hearing-related parameters,” in Proceedings of the Fan Noise 3rd International Symposium, Lyon, France, 2007.
[29]
E. M. Greitzer, “Surge and rotating stall in axial flow compressors, part I: theoretical compression system model,” ASME Journal of Engineering for Power, vol. 98, pp. 190–198, 1976.
[30]
J. Gleick, Chaos: Making a New Science, Vintage Books, 1987.
[31]
H. L. Boerrigter, PreMeSys: A Simulation Program to Determine the Frequency and Time Response of a Pressure Measurement System, VKI Technical Memorandum, von Karman Institute for Fluid Dynamics, 1996.
[32]
T. Arts, H. Boerrigter, M. Carbonaro, et al., Measurement Techniques in Fluid Dynamics—An Introduction, von Karman Institute for Fluid Dynamics, Rhode Saint Genèse, Belgium, 2009.
[33]
B. De-Rosier, M. D. Normand, and M. Peleg, “Effect of lag on the symmetrised dot pattern (SDP) displays of the mechanical signatures of crunchy cereal foods,” Science of Food and Agriculture, vol. 75, pp. 173–178, 1997.
[34]
C. A. Pickover, Computers, Pattern, Chaos and Beauty, St Martin’s Press, New York, NY, USA, 1990.
[35]
A. M. Fraser and H. L. Swinney, “Independent coordinates for strange attractors from mutual information,” Physical Review A, vol. 33, no. 2, pp. 1134–1140, 1986.
[36]
D. Perugini, T. Busà, G. Poli, and S. Nazzareni, “The role of chaotic dynamics and flow fields in the development of disequilibrium textures in volcanic rocks,” Journal of Petrology, vol. 44, no. 4, pp. 733–756, 2003.