Nanocrystalline silicon (nc-Si) thin film transistors (TFTs) are well suited for circuit applications that require moderate device performance and low-temperature CMOS-compatible processing below 250°C. Basic logic gate circuits fabricated using ambipolar nc-Si TFTs alone are presented and shown to operate with correct outputs at frequencies of up to 100?kHz. Ring oscillators consisting of nc-Si TFT-based inverters are also shown to operate at above 20?kHz with a supply voltage of 5?V, corresponding to a propagation delay of <10?μs/stage. These are the fastest circuits formed out of nanocrystalline silicon TFTs to date. The effect of bias stress degradation of TFTs on oscillation frequency is also explored, and relatively stable operation is shown with supply voltages >5?V for several hours. 1. Introduction Nanocrystalline silicon (nc-Si) has attracted much interest for use in circuit applications that require low temperature, large-area fabrication, and alternative substrates. Examples of these applications may include neuromorphic architectures for vision sensing [1, 2], flexible and flat-panel displays [3–5], radio frequency identification (RFID) tags [6], solar cells [7], and many more. Many of these applications do not require high performance devices, but rather the viability of a simple and inexpensive fabrication process. Neuromorphic circuits are also defect tolerant to a certain extent, allowing low-yield devices to be employed. Nc-Si thin film transistors (TFTs) can be fabricated using a CMOS-compatible fabrication process [8, 9], which also facilitates three-dimensional integration with high-performance CMOS structures [5, 10, 11]. In such a case, TFT circuitry such as biosensor arrays or neural networks could be fabricated around a CMOS core to improve the overall functionality. The limited use of noncrystalline silicon devices in circuits was historically due to low carrier mobility [12], device degradation under bias stress [13, 14], and the lack of p-channel operation [15]. Use of nc-Si instead of amorphous silicon (a-Si) improves the electron mobility and device degradation to a certain extent. The above drawbacks have been further addressed in the recent years by high purity nc-Si deposition which reduces the incorporation of impurity oxygen in the channel layer and ensures ambipolar operation of the devices [8, 15]. In this context, the term “ambipolar” refers to either n- or p-channel operation depending on the bias conditions. The maximum mobility observed in nc-Si TFTs is 150?cm2/V·s for electrons and 25?cm2/V·s in case of holes
References
[1]
K. D. Cantley, A. Subramaniam, H. Stiegler, R. Chapman, and E. Vogel, “Hebbian learning in spiking neural networks with nano-crystalline silicon TFTs and memristive synapses,” IEEE Transactions on Nanotechnol, vol. 10, no. 5, pp. 1066–1073, 2011.
[2]
C. Koch, “Neuromorphic vision chips,” IEEE Spectrum, vol. 33, no. 5, pp. 38–46, 1996.
[3]
A. J. Snell, K. D. Mackenzie, W. E. Spear, P. G. LeComber, and A. J. Hughes, “Application of amorphous silicon field effect transistors in addressable liquid crystal display panels,” Applied Physics, vol. 24, no. 4, pp. 357–362, 1981.
[4]
T. Tsukuda, Technology and Applications of Amorphous Silicon, Springer Series in Material Science, vol. 37, Springer, Berlin, Germany, 2000.
[5]
D. Knipp, R. A. Street, H. Stiebig et al., “Vertically integrated amorphous silicon color sensor arrays,” IEEE Transactions on Electron Devices, vol. 53, no. 7, pp. 1551–1558, 2006.
[6]
I. C. Y. Kwong, H. J. Lee, and A. Sazonov, “Nanocrystalline silicon diodes for rectifiers on RFID tags,” MRS Proceedings, vol. 1066, 2008.
[7]
C. Min, Z. Weijia, W. Tianmin, J. Fei, L. Guohua, and D. Kun, “Nanocrystalline silicon films with high conductivity and the application for PIN solar cells,” Vacuum, vol. 81, no. 1, pp. 126–128, 2006.
[8]
A. Subramaniam, K. D. Cantley, R. A. Chapman, B. Chakrabarty, and E. M. Vogel, “Ambipolar non-crystalline-silicon TFTs with submicron dimensions and reduced threshold voltage shift,” in Proceeding of the 69th Annual Device Research Conference (DRC '11), June 2011.
[9]
A. Subramaniam, K. D. Cantley, H. J. Stiegler, R. A. Chapman, and E. M. Vogel, “Submicron ambipolar nanocrystalline silicon thin-film transistors and inverters,” IEEE Transactions on Electron Devices, vol. 59, no. 2, pp. 359–366, 2012.
[10]
K. K. Likharev, “Neuromorphic CMOL circuits,” in Proceedings of the 3rd IEEE Conference on Nanotechnology Conference Digest (IEEE Nano '03), vol. 2, pp. 339–342, August 2003.
[11]
Y. Nara, Y. Kudou, and M. Matsumura, “Application of amorphous-silicon field-effect transistors in three-dimensional integrated circuits,” Japanese Journal of Applied Physics, vol. 22, no. 6, pp. L370–L372, 1983.
[12]
B. Stannowski, R. E. I. Schropp, R. B. Wehrspohn, and M. J. Powell, “Amorphous-silicon thin-film transistors deposited by VHF-PECVD and hot-wire CVD,” Journal of Non-Crystalline Solids, vol. 299–302, no. 2, pp. 1340–1344, 2002.
[13]
M. J. Powell, C. Van Berkel, I. D. French, and D. H. Nicholls, “Bias dependence of instability mechanisms in amorphous silicon thin-film transistors,” Applied Physics Letters, vol. 51, no. 16, pp. 1242–1244, 1987.
[14]
A. R. Hepburn, J. M. Marshall, C. Main, M. J. Powell, and C. Van Berkel, “Metastable defects in amorphous-silicon thin-film transistors,” Physical Review Letters, vol. 56, no. 20, pp. 2215–2218, 1986.
[15]
C. H. Lee, A. Sazonov, and A. Nathan, “High hole and electron mobilities in nanocrystalline silicon thin-film transistors,” Journal of Non-Crystalline Solids, vol. 352, no. 9-20, pp. 1732–1736, 2006.
[16]
A. Subramaniam, K. D. Cantley, R. A. Chapman, H. J. Stiegler, and E. M. Vogel, “Submicron ambipolar nanocrystalline-silicon TFTs with high-κ gate dielectrics,” in Proceedings of the International Semiconductor Device Research Symposium (ISDRS '11), December 2011.
[17]
K. D. Cantley, A. Subramaniam, H. J. Stiegler, R. A. Chapman, and E. M. Vogel, “SPICE simulation of nanoscale non-crystalline silicon TFTs in spiking neuron circuits,” in Proceedings of the 53rd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS '10), pp. 1202–1205, August 2010.
[18]
H. Gleskova, S. Wagner, V. Ga?parík, and P. Ková?, “150°C amorphous silicon thin-film transistor technology for polyimide substrates,” Journal of the Electrochemical Society, vol. 148, no. 7, pp. G370–G374, 2001.
[19]
E. Y. Ma and S. Wagner, “Amorphous silicon transistors on ultrathin steel foil substrates,” Applied Physics Letters, vol. 74, no. 18, pp. 2661–2662, 1999.
[20]
C. G. Lee, T. Joshi, K. Divakar, and A. Dodabalapur, “Circuit applications based on solution-processed zinc-oxide TFTs,” in Proceedings of the 69th Device Research Conference, Conference Digest (DRC '11), June 2011.
[21]
J. Sun, D. A. Mourey, D. Zhao et al., “ZnO thin-film transistor ring oscillators with 31-ns propagation delay,” IEEE Electron Device Letters, vol. 29, no. 7, pp. 721–723, 2008.
[22]
K. H. Kim, Y. H. Kim, H. J. Kim, J. I. Han, and S. K. Park, “Fast and stable solution-processed transparent oxide thin-film transistor circuits,” IEEE Electron Device Letters, vol. 32, no. 4, pp. 524–526, 2011.
[23]
T. D. Anthopoulos, D. M. De Leeuw, E. Cantatore et al., “Organic complementary-like inverters employing methanofullerene-based ambipolar field-effect transistors,” Applied Physics Letters, vol. 85, no. 18, pp. 4205–4207, 2004.
[24]
B. Crone, A. Dodabalapur, Y. Y. Lin et al., “Large-scale complementary integrated circuits based on organic transistors,” Nature, vol. 403, no. 6769, pp. 521–523, 2000.
[25]
H. Klauk, M. Halik, U. Zschieschang et al., “Flexible organic complementary circuits,” IEEE Transactions on Electron Devices, vol. 52, no. 4, pp. 618–622, 2005.
[26]
E. J. Meijer, D. M. De Leeuw, S. Setayesh et al., “Solution-processed ambipolar organic field-effect transistors and inverters,” Nature Materials, vol. 2, no. 12, pp. 678–682, 2003.
[27]
D. Zhao, D. A. Mourey, and T. N. Jackson, “Fast flexible plastic substrate ZnO circuits,” IEEE Electron Device Letters, vol. 31, no. 4, pp. 323–325, 2010.
[28]
K. Hiranaka, T. Yamaguchi, and S. Yanagisawa, “Self-alignment processed amorphous silicon ring oscillators,” IEEE Electron Device Letters, vol. 5, no. 7, pp. 224–225, 1984.
[29]
D. R. Allee, L. T. Clark, B. D. Vogt et al., “Circuit-level impact of a-Si: H thin-film-transistor degradation effects,” IEEE Transactions on Electron Devices, vol. 56, no. 6, pp. 1166–1176, 2009.