Recently, Basha (2013) addressed a problem that amalgamates approximation and optimization in the setting of a partially ordered set that is endowed with a metric. He assumed that if and are nonvoid subsets of a partially ordered set that is equipped with a metric and is a non-self-mapping from to , then the mapping has an optimal approximate solution, called a best proximity point of the mapping , to the operator equation , when is a continuous, proximally monotone, ordered proximal contraction. In this note, we are going to obtain his results by omitting ordering, proximal monotonicity, and ordered proximal contraction on . 1. Introduction Let be a non-self-mapping from to , where and are nonempty subsets of a metric space . Clearly, the set of fixed points of can be empty. In this case, one often attempts to find an element that is in some sense closest to . Best approximation theory and best proximity point analysis are applicable for solving such problems. The well-known best approximation theorem, due to Fan [1], asserts that if is a nonempty, compact, and convex subset of a normed linear space and is a continuous function from to , then there exists a point in such that the distance of to is equal to the distance of to . Such a point is called a best approximation point of in . A point in is said to be a best proximity point for , if the distance of to is equal to the distance of to . The aim of best proximity point theory is to provide sufficient conditions that assure the existence of best proximity points. Investigation of several variants of contractions for the existence of a best proximity point can be found in [1–15]. In most of the papers on the best proximity, the ordering, proximal monotonicity, and ordered proximal contraction on the mapping play a key role. A natural question arises that it is possible that we can have other ways that may not require the ordering as well as proximal monotonicity and ordered proximal contraction on the mapping . Very recently, Basha [5] addressed a problem that amalgamates approximation and optimization in the setting of a partially ordered set that is endowed with a metric. He assumed that if and are nonvoid subsets of a partially ordered set that is equipped with a metric and is a non-self-mapping from to , then the mapping has an optimal approximate solution, called a best proximity point of the mapping , to the operator equation , when is a continuous, proximally monotone, ordered proximal contraction. In this note, we are going to obtain his results by omitting ordering, proximal monotonicity, and
References
[1]
K. Fan, “Extensions of two fixed point theorems of F. E. Browder,” Mathematische Zeitschrift, vol. 112, pp. 234–240, 1969.
[2]
C. di Bari, T. Suzuki, and C. Vetro, “Best proximity points for cyclic Meir-Keeler contractions,” Nonlinear Analysis. Theory, Methods & Applications, vol. 69, no. 11, pp. 3790–3794, 2008.
[3]
A. A. Eldred and P. Veeramani, “Existence and convergence of best proximity points,” Journal of Mathematical Analysis and Applications, vol. 323, no. 2, pp. 1001–1006, 2006.
[4]
S. Karpagam and S. Agrawal, “Best proximity point theorems for p-cyclic Meir-Keeler contractions,” Fixed Point Theory and Applications, vol. 2009, Article ID 197308, 2009.
[5]
S. S. Basha, “Best proximity point theorems on partially ordered sets,” Optimization Letters, vol. 7, no. 5, pp. 1035–1043, 2013.
[6]
S. Sadiq Basha, “Extensions of Banach's contraction principle,” Numerical Functional Analysis and Optimization, vol. 31, no. 4–6, pp. 569–576, 2010.
[7]
S. Sadiq Basha, “Best proximity points: global optimal approximate solutions,” Journal of Global Optimization, vol. 49, no. 1, pp. 15–21, 2011.
[8]
V. Sankar Raj and P. Veeramani, “Best proximity pair theorems for relatively nonexpansive mappings,” Applied General Topology, vol. 10, no. 1, pp. 21–28, 2009.
[9]
N. Shahzad, S. Sadiq Basha, and R. Jeyaraj, “Common best proximity points: global optimal solutions,” Journal of Optimization Theory and Applications, vol. 148, no. 1, pp. 69–78, 2011.
[10]
S. Sadiq Basha and P. Veeramani, “Best proximity pair theorems for multifunctions with open fibres,” Journal of Approximation Theory, vol. 103, no. 1, pp. 119–129, 2000.
[11]
S. S. Basha, “Common best proximity points: global minimal solutions,” TOP, vol. 21, no. 1, pp. 182–188, 2013.
[12]
S. Sadiq Basha, “Global optimal approximate solutions,” Optimization Letters, vol. 5, no. 4, pp. 639–645, 2011.
[13]
S. Sadiq Basha, “Best proximity point theorems generalizing the contraction principle,” Nonlinear Analysis. Theory, Methods & Applications, vol. 74, no. 17, pp. 5844–5850, 2011.
[14]
K. W?odarczyk, R. Plebaniak, and C. Obczyński, “Convergence theorems, best approximation and best proximity for set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces,” Nonlinear Analysis. Theory, Methods & Applications, vol. 72, no. 2, pp. 794–805, 2010.
[15]
K. W?odarczyk, R. Plebaniak, and A. Banach, “Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces,” Nonlinear Analysis. Theory, Methods & Applications, vol. 70, no. 9, pp. 3332–3341, 2009.