全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Ecological Interactions Shape the Dynamics of Seed Predation in Acrocomia aculeata (Arecaceae)

DOI: 10.1371/journal.pone.0098026

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The complex network of direct and indirect relationships determines not only the species abundances but also the community characteristics such as diversity and stability. In this context, seed predation is a direct interaction that affects the reproductive success of the plant. For Acrocomia aculeata, the seed predation by Pachymerus cardo and Speciomerus revoili in post-dispersal may destroy more than 70% of the propagules and is influenced by the herbivory of the fruits during pre-dispersal. Fruits of plants with a higher level of herbivory during pre-dispersal are less attacked by predators in post-dispersal. We proposed a hypothesis that describes this interaction as an indirect defense mediated by fungi in a multitrophic interaction. As explanations, we proposed the predictions: i) injuries caused by herbivores in the fruits of A. aculeata favor fungal colonization and ii) the colonization of A. acuelata fruit by decomposing fungi reduces the selection of the egg-laying site by predator. Methodology/Principal Findings For prediction (i), differences in the fungal colonization in fruits with an intact or damaged epicarp were evaluated in fruits exposed in the field. For prediction (ii), we performed fruit observations in the field to determine the number of eggs of P. cardo and/or S. revoili per fruit and the amount of fungal colonization in the fruits. In another experiment, in the laboratory, we use P. cardo females in a triple-choice protocol. Each insect to choose one of the three options: healthy fruits, fruits with fungus, or an empty pot. The proposed hypothesis was corroborated. Fruits with injuries in the epicarp had a higher fungal colonization, and fruits colonized by fungi were less attractive for egg-laying by seed predators. Conclusion/Significance This study emphasizes the importance of exploring the networks of interactions between multitrophic systems to understand the dynamics and maintenance of natural populations.

References

[1]  Thompson JN (1999) The evolution of species interactions. Science 284: 2116–2118. doi: 10.1126/science.284.5423.2116
[2]  Price PW (1997) Insect Ecology. New York: John Wiley & Sons. 876p.
[3]  Price PW, Bouton CE, Gross P, McPheron BA, Thompson JN, et al. (1980) Interactions among three trophic levels: influence of plants on interactions between herbivores and natural enemies. Annual Review of Ecology and Systematics 11: 41–65. doi: 10.1146/annurev.es.11.110180.000353
[4]  Tscharntke T, Hawkins AH (2002) Multitrophic level interactions. Cambryte: Cambryte University Press. 275p.
[5]  Begon M, Townsend CR, Haper JL (2006) Ecolgy: from individuals from ecossystems. Oxford: Blakwell Publishing. 658p.
[6]  Schowalter TD (2006) Insect Ecology: an ecosystem approach. Massachusetts: Academic Press. 633p.
[7]  Janzen DH (1970) Herbivores and the number of tree species in tropical forests. American Naturalist 104: 501–528. doi: 10.1086/282687
[8]  Abrams PA (1995) Implications of dynamically variable traits for identifying, classifying, and measuring direct and indirect effects in ecological communities. American Naturalist 146(1): 112–134. doi: 10.1086/285789
[9]  Wootton JT (1993) Indirect effects and habitat use in an intertidal community: interaction chains and interaction modifications. American Naturalist 141: 71–79. doi: 10.1086/285461
[10]  Huang C, Sih A (1991) Experimental studies on direct and indirect interactions in a three trophic-level streamsystem. Oecologia 85(4): 530–536. doi: 10.1007/bf00323765
[11]  Miller TE, Kerfoot WC (1987) Redefining indirect effects. In Kerfoot WC, Sih A, editors. Predation: direct and indirect impacts on aquatic communities. Hanover: University Press of New England. 33–37.
[12]  Paris CI, Llusia J, Pe?uelas J (2011) Indirect effects of tending ants on holm oak volatiles and acorn quality. Plant Signaling and Behavior 6(4): 547–550. doi: 10.4161/psb.6.4.14839
[13]  Heil M (2008) Indirect defence via tritrophic interactions. New Phytologist 178: 41–61. doi: 10.1111/j.1469-8137.2007.02330.x
[14]  Agarwal VM, Rastogi N, Raju SVS (2007) Impact of predatory ants on two lepidopteran insect pests in Indian cauliflower agroecosystems. Journal of Applied Entomology 131(7): 493–500. doi: 10.1111/j.1439-0418.2007.01197.x
[15]  Fagundes M, Neves FS, Fernandes GW (2005) Direct and indirect interactions involving ants, insect herbivores, parasitoids, and the host plant Baccharis dracunculifolia (Asteraceae). Ecological Entomology 30: 28–35. doi: 10.1111/j.0307-6946.2005.00668.x
[16]  Del-Claro K (2004) Multitrophic relationships, conditional mutualisms, and the study of interaction biodiversity in Tropical Savannas. Neotropical Entomology 33(6): 665–672. doi: 10.1590/s1519-566x2004000600002
[17]  Mooney KA, Pratt RT, Singer MS (2012) The tri-trophic interactions hypothesis: interactive effects of host plant quality, diet breadth and natural enemies on herbivores. Plos One 7(4): e34403. doi: 10.1371/journal.pone.0034403
[18]  Karimzadeh J, Hardie J, Wright DJ (2013) Plant resistance affects the olfactory response and parasitism success of Cotesia vestalis. Journal of Insect Behavior 26: 35–50. doi: 10.1007/s10905-012-9331-y
[19]  Tariq M, Wright DJ, Bruce TJA, Staley JT (2013) Drought and root herbivory interact to alter the response of above-ground parasitoids to aphid infested plants and associated plant volatile signals. Plos One 8(7): e69013. doi: 10.1371/journal.pone.0069013
[20]  Tack AJM, Dicke M (2013) Plant pathogens structure artropod communities across multiple spatial and temporal scales. Funcional Ecology 27: 633–645. doi: 10.1111/1365-2435.12087
[21]  Mouttet R, Bearez P, Thomas C, Desneux N (2011) Phytophagous arthropods and a pathogen sharing a host plant: evidence for indirect plant-mediated interactions. Plos One 6(5): e18840. doi: 10.1371/journal.pone.0018840
[22]  Saari S, Sundell J, Huitu O, Helander M, Ketoja E, et al. (2010) Fungal-mediated multitrophic interactions - do grass endophytes in diet protect voles from predators?. Plos One 5(3): e9845. doi: 10.1371/journal.pone.0009845
[23]  Bennett AE, Alers-Garcia J, Bever JD (2006) Three-way interactions among mutualistic mycorrhizal fungi, plants, and plant enemies: hypotheses and synthesis. American Naturalist 167(2): 141–152. doi: 10.1086/499379
[24]  Torres-Alruiz MD, Rodríguez DJ (2013) A topo-dynamical perspective to evaluate indirect interactions in trophic webs: New indexes. Ecological Modelling 250: 363–369. doi: 10.1016/j.ecolmodel.2012.11.024
[25]  Amarasekare P (2003) Diversity–stability relationships in multitrophic systems: an empirical exploration. Journal of Animal Ecology 72: 713–724. doi: 10.1046/j.1365-2656.2003.00744.x
[26]  Miller TE (1994) Direct and indirect species interactions in an early old-field plant community. American Naturalist 143(6): 1007–1025. doi: 10.1086/285646
[27]  Strauss SY (1991) Indirect effects in community ecology: their definition, study and importance. Trends in Ecology and Evolution 6(7): 206–210. doi: 10.1016/0169-5347(91)90023-q
[28]  Paine RT (1969) A note on trophic complexity and community stability. American Naturalist 103(929): 91–93. doi: 10.1086/282586
[29]  Cornelissen TG, Fernandes GW (2001) Defence, growth and nutrient allocation in the tropical shrub Bauhinia brevipes (Leguminosae). Austral Ecology 26: 246–253. doi: 10.1046/j.1442-9993.2001.01109.x
[30]  Ribeiro SP, Brown VK (2006) Prevalence of monodominant vigorous tree populations in the tropics: herbivory pressure on Tabebuia species in very different habitats. Journal of Ecology 94: 932–941. doi: 10.1111/j.1365-2745.2006.01133.x
[31]  Andersen AN (1989) How important is seed predation to recruitment in stable populations of long-lived perennials?. Oecologia 81(3): 310–315.
[32]  Janzen DH (1971) Seed predation by animals. Annual Review of Ecology and Systematics 2: 465–492. doi: 10.1146/annurev.es.02.110171.002341
[33]  Shepherd VE, Chapman CA (1998) Dung beetles as secondary seed dispersers: impact on seed predation and germination. Journal of Tropical Ecology 14: 199–215. doi: 10.1017/s0266467498000169
[34]  Donatti CI, Guimar?es-Jr PR, Galetti M (2009) Seed dispersal and predation in the endemic Atlantic rainforest palm Astrocaryum aculeatissimum across a gradient of seed disperser abundance. Ecological Research 24: 1187–1195. doi: 10.1007/s11284-009-0601-x
[35]  Steffler CE, Donatti CI, Galetti M (2008) Seed Predation of Attalea dubia (Arecaceae) in an Island in the Atlantic Rainforest of Brazil. Palms 52(3): 133–140.
[36]  Silva FR, Begnini RM, Scherer KZ, Lopes BC, Castellani TT (2007) Preda??o de Sementes de Syagrus romanzoffiana (Cham.) Glassman (Arecaceae) por Insetos na Ilha de Santa Catarina, SC. Revista Brasileira de Biociências 5(1): 681–683.
[37]  Scariot AO (1998) Seed dispersal and predation of the palm Acrocomia aculeata.. Principes 42(1): 5–8.
[38]  Johnson CD, Zona S, Nilsson JA (1995) Bruchid beetles and palm seeds: recorded relationships. Principes 39(1): 25–35.
[39]  Ramos FA, Martins I, Farias JM, Silva ICS, Costa DC, et al. (2001) Oviposition and Predation by Speciomerus revoili (Coleoptera, Bruchidae) on seeds of Acrocomia aculeata (Arecaceae) in Brasília, DF, Brazil. Brazilian Journal of Biology 61(3): 449–454. doi: 10.1590/s1519-69842001000300014
[40]  Delobel A, Couturier G, Kahn F, Nilsson JA (1995) Trophic relationships between palms and bruchids (Coleoptera: Bruchidae: Pachymerini) in Peruvian Amazonia. Amazoniana 13(3/4): 209–219.
[41]  Center TD, Johnson CD (1974) Coevolution of some seed beetles (Coleoptera: Bruchidae) and their hosts. Ecology 55: 1096–1103. doi: 10.2307/1940359
[42]  Wright SJ (1990) Cumulative satiation of a seed predator over the fruiting season of its host. Oikos 58: 212–276. doi: 10.2307/3545217
[43]  Janzen DH (1971b) The fate of Scheeleu rostrata fruits beneath the parent tree: predispersal attack by Bruchids. Principes 15: 89–101.
[44]  Clement CR, Lleras Pérez E, van Leeuwen J (2005) O potencial das palmeiras tropicais no Brasil: acertos e fracassos das últimas décadas. Agrociências 9(1–2): 67–71.
[45]  Lorenzi GMAC, Negrelle RRB (2006) Acrocomia aculeata (Jacq.) Lodd. ex. Mart: aspectos ecológicos, usos e potencialidades. Vis?o Acadêmica 7(1).
[46]  Pires TP, Souza ES, Kuki KN, Motoike SY (2012) Ecophysiological traits of the macaw palm: a contribution towards the domestication of a novel oil crop. Industrial Crops and Products 44: 200–210. doi: 10.1016/j.indcrop.2012.09.029
[47]  Scariot AO, Lleras E, Hay JD (1991) Reproductive biology of the palm Acrocomia aculeata in Central Brazil. Biotropica 23(1): 12–22. doi: 10.2307/2388683
[48]  Miranda IPA, Rabelo A, Bueno CR, Barbosa EM, Ribeiro MNS (2001) Frutos de palmeiras da amaz?nia. Manaus: MCT INPA. 7–10.
[49]  Scariot AO, Lleras E, Hay JD (1995) Flowering and fruiting phenologies of the palm Acrocomia aculeata: patterns and consequences. Biotropica 27(2): 168–173. doi: 10.2307/2388992
[50]  Almeida SP (1998) Cerrado: aproveitamento alimentar. Planaltina: EMBRAPA-SPAC. 188p.
[51]  Ramírez N, Traveset A (2010) Predispersal seed-predation by insects in the Venezuelan Central Plain: overall patterns and traits that influence its biology and taxonomic groups. Perspectives in Plant Ecology, Evolution and Systematics 12: 193–209. doi: 10.1016/j.ppees.2010.04.001
[52]  Silvius KM, Fragoso JM (2002) Pulp handling by vertebrate seed dispersers increases palm seed predation by bruchid beetles in the northern Amazon. Journal of Ecology 90: 1024–1032. doi: 10.1046/j.1365-2745.2002.00728.x
[53]  Janzen DH (I980) Specificity of seed-attacking beetles in a Costa Rican deciduous forest. Journal of Ecology 68(3): 929–952. doi: 10.2307/2259466
[54]  Secretaria Municipal de Desenvolvimento Econ?mico, Turismo, Ciência e Tecnologia (2013) Coletanea de informa??es sobre o município de Montes Claros. Available: http://www.montesclaros.mg.gov.br/desenv?olvimento %20economico/div_ind-com/pdf/Dados%20Ger?ais%20da%20cidade%20de%20Montes%20Claros.pdf. Accessed 2013 April 15.
[55]  Instituto Nacional de Metereologia (2013) Banco de Dados Meteorológicos para Ensino e Pesquisa. Available: http://www.inmet.gov.br/portal/index.php??r=bdmep/bdmep. Accessed 2013 April 28.
[56]  Crawley MJ (2002) Statistical computting: an introduction to data analysis using S-Plus. [s.l.]: John Wiley & Sons, 761 p.
[57]  Guimar?es DP, Reis RJ, Landau EC (2010) Boletim de pesquisa e desenvolvimento: índices pluviométricos de Minas Gerais. Sete Lagoas: Embrapa Milho e Sorgo. 30p.
[58]  Crist TO, Friese CF (1993) The impact of fungi on soil seeds: implications for plants and granivores in a semiarid shrub-steppe. Ecology 74(8): 2231–2239. doi: 10.2307/1939576
[59]  Stamford NP (2005) Microbiota dos solos tropicais. In: Michereff SJ, Andrade DEGT, Menezes M Ecologia e manejo de patógenos radiculares em solos tropicais. Recife: UFRPE, Imprensa Universitária. 61–92.
[60]  Wicklow DT, Carroll GC (1983) The fungal community; its organization and role in the ecosystem. New York: Basel. 894p.
[61]  Gallery RE, Dalling JW, Arnold AE (2007) Diversity, host affinity, and distribution of seed-infecting fungi: a case study with Cecropia. Ecology 88: 582–588. doi: 10.1890/05-1207
[62]  Kremer RJ (1993) Management of weed seed Banks with microorganisms. Ecological Application 3: 42–52. doi: 10.2307/1941791
[63]  Christensen M (1989) A viem of fungal ecology. Mycologia 81(1): 1–19. doi: 10.2307/3759446
[64]  Madej CW, Clay K (1991) Avian seed preference and weight loss experiments: the effect of fungal endophyte-infected tall fescue seeds. Oecologia 88: 296–302. doi: 10.1007/bf00320825
[65]  Janzen DH (1977) Why fruits rot, seeds mold, and meat spoils. American Naturalist 111(980): 691–713. doi: 10.1086/283200
[66]  Mordecai EA (2012) Soil moisture and fungi affect seed survival in california grassland annual plants. Plos One 7(6): e39083. doi: 10.1371/journal.pone.0039083
[67]  Dostál P (2010) Post-dispersal seed mortality of exotic and native species: Effects of fungal pathogens and seed predators. Basic and Applied Ecology 11: 676–684. doi: 10.1016/j.baae.2010.10.001
[68]  Schafer M, Kotanen PM (2004) Impacts of naturally-occurring soil fungi on seeds of meadow plants. Plant Ecology 175: 19–35. doi: 10.1023/b:vege.0000048096.00772.23
[69]  Faeth SH (2002) Are endophytic fungi defensive plant mutualists?. Oikos 98: 25–36. doi: 10.1034/j.1600-0706.2002.980103.x
[70]  Anderson RC, Ebbers BC, Liberta AE (1986) Soil moisture influences colonization of prairie cordgrass (Spartina pectinata Lind.) by vesicular-arbuscular mycorrhizal fungi. New Phytologist 102(4): 523–527. doi: 10.1111/j.1469-8137.1986.tb00828.x
[71]  Lee EH, Eo JK, Lee CS, Eom AH (2012) Effect of soil ameliorators on ectomycorrhizal fungal communities that colonize seedlings of pinus densiflora in abandoned coal mine spoils. Mycobiology 40(3): 168–172. doi: 10.5941/myco.2012.40.3.168
[72]  Carrenho R, Trufem SFB, Bononi VLR, Silva ES (2007) The effect of different soil properties on arbuscular mycorrhizal colonization of peanuts, sorghum and maize. Acta Botanica Brasilica 21(3): 723–730. doi: 10.1590/s0102-33062007000300018
[73]  Horn BW (2006) Relationship between soil densities of Aspergillus species and colonization of wounded peanut seeds. Canadian Journal of Microbiology 52: 951–960. doi: 10.1139/w06-050
[74]  Mills JT (1983) Insect-fungus associations influence seed deterioration. Phytopathology 73(2): 330–335. doi: 10.1094/phyto-73-330
[75]  Nakamura R, Mitchell-Olds T, Manasse R, Lello D (1995) Seed predation, pathogen infection and life-history traits in Brassica rapa.. Oecologia 102(3): 324–328. doi: 10.1007/bf00329799
[76]  Kruess A (2001) Indirect interaction between a fungal plant pathogen and a herbivorous beetle of the weed Cirsium arvense. Oecologia 130: 563–569. doi: 10.1007/s00442-001-0829-9
[77]  Birch ANE, Simmonds MSJ, Blaney WM (1989) Chemical interactions between bruchids and legumes. In: Stirton, Borowiec L (1987) The genera of seed-beetles (Coleoptera, Bruchidae). Polskie Pismo Entomologiczne 57: 3–207.
[78]  Leishman MR, Wright IJ, Moles AT, Westoby M (2000) The evolutionary ecology of seed size. In M. Fenner, editor. Seeds: The ecology of regeneration in plant communities. Wallingford: CAB International. 31–57.
[79]  Webber J (1981) A natural control of Dutch elm disease. Nature 292: 449–451. doi: 10.1038/292449a0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133