全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Protection of Retina by αB Crystallin in Sodium Iodate Induced Retinal Degeneration

DOI: 10.1371/journal.pone.0098275

Full-Text   Cite this paper   Add to My Lib

Abstract:

Age-related macular degeneration (AMD) is a leading cause of blindness in the developed world. The retinal pigment epithelium (RPE) is a critical site of pathology in AMD and αB crystallin expression is increased in RPE and associated drusen in AMD. The purpose of this study was to investigate the role of αB crystallin in sodium iodate (NaIO3)-induced retinal degeneration, a model of AMD in which the primary site of pathology is the RPE. Dose dependent effects of intravenous NaIO3 (20-70 mg/kg) on development of retinal degeneration (fundus photography) and RPE and retinal neuronal loss (histology) were determined in wild type and αB crystallin knockout mice. Absence of αB crystallin augmented retinal degeneration in low dose (20 mg/kg) NaIO3-treated mice and increased retinal cell apoptosis which was mainly localized to the RPE layer. Generation of reactive oxygen species (ROS) was observed with NaIO3 in mouse and human RPE which increased further after αB crystallin knockout or siRNA knockdown, respectively. NaIO3 upregulated AKT phosphorylation and peroxisome proliferator–activator receptor–γ (PPARγ) which was suppressed after αB crystallin siRNA knockdown. Further, PPARγ ligand inhibited NaIO3-induced ROS generation. Our data suggest that αB crystallin plays a critical role in protection of NaIO3-induced oxidative stress and retinal degeneration in part through upregulation of AKT phosphorylation and PPARγ expression.

References

[1]  Gehrs KM, Anderson DH, Johnson LV, Hageman GS (2006) Age-related macular degeneration-emerging pathogenic and therapeutic concepts. Ann Med. 38: 450–471. doi: 10.1080/07853890600946724
[2]  Ambati J, Fowler B (2012) Mechanisms of Age-related macular degeneration. Neuron. 75: 26–39. doi: 10.1016/j.neuron.2012.06.018
[3]  Bird AC (2010) Therapeutic targets in age-related macular degeneration. J Clin Invest. 120: 3033–3041. doi: 10.1172/jci42437
[4]  Klein ML, Ferris FL 3rd, Armstrong J, Hwang TS, Chew EY, et al. (2008) Retinal precursors and the development of geographic atrophy in age-related macular degeneration. Ophthalmology. 115: 1026–1031. doi: 10.1016/j.ophtha.2007.08.030
[5]  Ramkumar HL, Zhang J, Chan CC (2010) Retinal ultrastructure of murine models of dry age-related macular degeneration. Prog Retin Eye Res 29: 169–90. doi: 10.1016/j.preteyeres.2010.02.002
[6]  Enzmann V, Row BW, Yamauchi Y, Kheirandish L, Gozal D, et al. (2006) Behavioral and anatomical abnormalities in a sodium iodate-induced model of retinal pigment epithelium degeneration,. Exp Eye Res 82: 441–448. doi: 10.1016/j.exer.2005.08.002
[7]  Zhao C, Yasumura D, Li X, Mathes M, Lloyd M, et al. (2011) mTOR-mediated dedifferentiation of the retinal pigment epithelium initiates photoreceptor degeneration in mice. J Clin Invest 121: 369–383. doi: 10.1172/jci44303
[8]  Markovets AM, Saprunova VB, Zhdankina AA, Fursova AZh, Kolosova NG (2011) Alterations of retinal pigment epithelium cause AMD like retinopathy in senescence-accelerated OXYS rats. Aging (Albany, NY) 3: 44–54.
[9]  Kolosova NG, Muraleva NA, Zhdankina AA, Stefanova NA, Fursova AZ, et al. (2012) Prevention of age-related macular degeneration-like retinopathy by rapamycin in rats. Amer J Pathol 181: 472–477. doi: 10.1016/j.ajpath.2012.04.018
[10]  Malek G, Johnson LV, Mace ME, Saloupis P, Schmechel DE, et al. (2005) Apolipoprotein E allele-dependent pathogenesis: a model for age related macular degeneration. Proc Natl Acad Sci USA 102: 11900–11905. doi: 10.1073/pnas.0503015102
[11]  Ding JD, Johnson LV, Herrmann R, Farsiu S, Smith SG, et al. (2011) Antiamyloid therapy protects against retinal pigmented epithelium damage and vision loss in a model of age-related macular degeneration. Proc Natl Acad Sci USA 108: E279–87. doi: 10.1073/pnas.1100901108
[12]  Karan G, Lillo C, Yang Z, Cameron DJ, Locke KG, et al. (2005) Lipofuscin accumulation, abnormal electrophysiology, and photoreceptor degeneration in mutant ELOVL4 transgenic mice: a model for macular degeneration. Proc Natl Acad Sci USA 102: 4164–4169. doi: 10.1073/pnas.0407698102
[13]  Zhu D, Wu J, Spee C, Ryan SJ, Hinton DR (2009) BMP4 mediates oxidative stress-induced cell senescence and is overexpressed in age-related macular degeneration. J Biol Chem 284: 9529–9539. doi: 10.1074/jbc.m809393200
[14]  Zhu D, Deng X, Xu J, Hinton DR (2009) What determines the switch between atrophic and neovascular forms of age related macular degeneration? -the role of BMP4 induced senescence. Aging (Albany, NY). 12: 740–745.
[15]  Longbottom R, Fruttiger M, Douglas RH, Martinez-Barbera JP, Greenwood J (2009) Genetic ablation of retinal pigment epithelial cells reveals the adaptive response of the epithelium and impact on photoreceptors,. Proc Natl Acad Sci USA 106: 18728–18733. doi: 10.1073/pnas.0902593106
[16]  Kleinman ME, Kaneko H, Cho WG, Dridi S, Fowler BJ, et al. (2012) Short-interfering RNAs induce retinal degeneration via TLR3 and IRF3. Mol Ther. 20: 101–108. doi: 10.1038/mt.2011.212
[17]  Kaneko H, Dridi S, Tarallo V, Gelfand BD, Fowler BJ, et al. (2011) DICER1 deficit induces AluRNA toxicity in age-related macular degeneration. Nature 471: 325–330. doi: 10.1038/nature09830
[18]  Tarallo V, Hirano Y, Gelfand BD, Dridi S, Kerur N, et al. (2012) DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88. Cell 149: 847–859. doi: 10.1016/j.cell.2012.03.036
[19]  Franco LM, Zulliger R, Wolf-Schnurrbusch UE, Katagiri Y (2009) Decreased visual function after patchy loss of retinal pigment epithelium induced by low-dose sodium iodate,. Invest Ophthalmol Vis Sci. 50: 4004–4010. doi: 10.1167/iovs.08-2898
[20]  Ringvold A, Olsen EG, Flage T (1981) Transient breakdown of the retinal pigment epithelium diffusion barrier after sodium iodate: a fluorescein angiographic and morphological study in the rabbit,. Exp Eye Res 33: 361–369. doi: 10.1016/s0014-4835(81)80088-7
[21]  Kiuchi K, Yoshizawa K, Shikata N, Moriguchi K, Tsubura A (2002) Morphologic characteristics of retinal degeneration induced by sodium iodate in mice. Curr Eye Res 25: 373–379. doi: 10.1076/ceyr.25.6.373.14227
[22]  Redfern WS, Storey S, Tse K, Hussain Q, Maung KP, et al. (2011) Evaluation of a convenient method of assessing rodent visual function in safety pharmacology studies: effects of sodium iodate on visual acuity and retinal morphology in albino and pigmented rats and mice. J Pharmacol Toxicol Methods 63: 102–114. doi: 10.1016/j.vascn.2010.06.008
[23]  Kannan R, Sreekumar PG, Hinton DR (2012) Novel roles for alpha crystallins in retinal function and disease. Prog Retin Eye Res 31: 576–604. doi: 10.1016/j.preteyeres.2012.06.001
[24]  Nakata K, Crabb JW, Hollyfield JG (2005) Crystallin distribution in Bruch's membrane-choroid complex from AMD and age-matched donor eyes. Exp Eye Res 80: 821–826. doi: 10.1016/j.exer.2004.12.011
[25]  De S, Rabin DM, Salero E, Lederman PL, Temple S, et al. (2007) Human retinal pigment epithelium cell changes and expression of alphaB-crystallin: a biomarker for retinal pigment epithelium cell change in age-related macular degeneration. Arch Ophthalmol. 125: 641–645. doi: 10.1001/archopht.125.5.641
[26]  Xi J, Farjo R, Yoshida S, Kern TS, Swaroop A, et al. (2003) A comprehensive analysis of the expression of crystallins in mouse retina,. Mol Vis 9: 410–419.
[27]  Fort PE, Lampi KJ (2011) New focus on alpha-crystallins in retinal neurodegenerative diseases. Exp Eye Res. 92: 98–103. doi: 10.1016/j.exer.2010.11.008
[28]  Yaung J, Jin M, Barron E, Spee C, Wawrousek EF, et al. (2007) alpha-Crystallin distribution in retinal pigment epithelium and effect of gene knockouts on sensitivity to oxidative stress. Mol Vis 13: 566–577.
[29]  Brady JP, Garland DL, Green DE, Tamm ER, Giblin FJ (2001) AlphaB-crystallin in lens development and muscle integrity: a gene knockout approach,. Invest Ophthalmol Vis Sci. 42: 2924–2934.
[30]  Yaung J, Kannan R, Wawrousek EF, Spee C, Sreekumar PG, et al. (2008) Exacerbation of retinal degeneration in the absence of alpha crystallins in an in vivo model of chemically induced hypoxia. Exp Eye Res. 86: 355–365. doi: 10.1016/j.exer.2007.11.007
[31]  Dou G, Sreekumar PG, Spee C, He S, Ryan SJ (2012) Deficiency of alphaB crystallin augments ER Stress-induced apoptosis by enhancing mitochondrial dysfunction. Free Radic Bio Med. 53: 1111–1122. doi: 10.1016/j.freeradbiomed.2012.06.042
[32]  Sreekumar PG, Spee C, Ryan SJ, Cole SPC, Kannan R, et al. (2012) Mechanism of RPE cell death in alpha-crystallin deficient mice: A novel and critical role for MRP1-mediated GSH efflux. PLoS ONE. 7(3): e33420 doi:10.137/journal.pone.0033420.
[33]  Sreekumar PG, Kannan R, Kitamura M, Spee C, Barron E, et al. (2010) AlphaB crystallin is apically secreted within exosomes by polarized human retinal pigment epithelium and provides neuroprotection to adjacent cells. PLoS ONE 5(10): e12578 doi:10.1371.journal.pone.0012578.
[34]  Ousman SS, Tomooka BH, van Noort JM, Wawrousek EF, O'Connor KC (2007) Protective and therapeutic role for alphaB-crystallin in autoimmune demyelination. Nature 448: 474–479. doi: 10.1038/nature05935
[35]  Brownell SE, Becker RA, Steinman L (2012) The protective and therapeutic function of small heat shock proteins in neurological diseases. Front Immunol. 3: 74. doi: 10.3389/fimmu.2012.00074
[36]  Rothbard JB, Kumellas MP, Brownell S, Adams CM, Su L, et al. (2012) Therapeutic effects of systemic administration of chaperone alphaB crystallin associated with binding proinflammatory plasma proteins. J Biol Chem 287: 9708–9721. doi: 10.1074/jbc.m111.337691
[37]  Organisciak D, Darrow R, Gu X, Barsalou L, Crabb JW (2006) Genetic, age and light mediated effects on crystallin protein expression in the retina,. Photochem Photobiol 82: 1088–1096. doi: 10.1562/2005-06-30-ra-599
[38]  Sakaguchi H, Miyagi M, Darrow RM, Crabb JS, Hollyfield JG (2003) Intense light exposure changes the crystallin content in retina,. Exp Eye Res 76: 131–133. doi: 10.1016/s0014-4835(02)00249-x
[39]  Kase S, He S, Sonoda S, Kitamura M, Spee C, et al. (2010) alphaB-crystallin regulation of angiogenesis by modulation of VEGF,. Blood. 115: 3398–3406. doi: 10.1182/blood-2009-01-197095
[40]  Zhou P, Ye H-F, Jiang Y-X, Yang J, Zhu X-J, et al. (2012) AlphaA crystallin may protect against geographic atrophy-meta analysis of cataract vs cataract surgery for geographic atrophy and experimental studies. PLoS ONE 7(8): e43173 doi:10.1371/journal.pone.0043173.
[41]  Whiteside C, Wang H, Xia L, Munk S, Goldberg HJ, et al. (2009) Rosiglitazone prevents high glucose-induced vascular endothelial growth factor and collagen IV expression in cultured mesangial cells,. Exp Diabetes Res 2009: 910783. doi: 10.1155/2009/910783
[42]  Liu B, Bhat M, Nagaraj RH (2011) AlphaB-crystallin inhibits glucose-induced apoptosis in vascular endothelial cells,. Biochem Biophys Res Commun 321: 254–258. doi: 10.1016/j.bbrc.2004.06.151
[43]  Chung SS, Kim M, Lee JS, Ahn BY, Jung HS (2011) Mechanism for antioxidative effects of thiazolidinediones in pancreatic beta-cells. Am J Physiol Endocrinol Metab 311: E912–11.
[44]  Martin HL, Mounsey RB, Mustafa S, Sathe K, Teismann P (2012) Pharmacological manipulation of peroxisome proliferator activator receptor gamma (PPAR gamma) reveals a role for anti-oxidant protection in a model of Parkinson's disease. Exp Neurol 235: 528–538. doi: 10.1016/j.expneurol.2012.02.017
[45]  Sreekumar PG, Hinton DR, Kannan R (2012) Glutathione metabolism and its contribution to antiapoptotic properties of alpha-crystallins in the retina. In Studies on Retinal and Choroidal Disorders (Stratton RD, Hauswirth WW, Gardner TW, eds.Humana Press) Chapter 9, p. 181–202.
[46]  Datta SR, Dudek H, Tao Y, Masters S, Fu H (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91: 231–241. doi: 10.1016/s0092-8674(00)80405-5
[47]  Yang P, Peairs JJ, Tano R, Jaffe GJ (2006) Oxidant-mediated Akt activation in human RPE cells,. Invest Ophthalmol Vis Sci 47: 4598–4606. doi: 10.1167/iovs.06-0140
[48]  Kim JW, Kang KH, Burrola P, Mak TW, Lemke G (2008) Retinal degeneration triggered by inactivation of PTEN in the retinal pigment epithelium. Genes Dev 22: 3147–3157. doi: 10.1101/gad.1700108
[49]  Pasupuleti N, Matsuyama S, Voss O, Doseff AI, Song K, et al.. (2010) The anti-apoptotic function of human alphaA-crystallin is directly related to its chaperone activity. Cell Death and Disease. 1: , e31; doi: 10;1038/cddis.2010.3
[50]  Zhu C, Vollrath D (2011) mTOR pathway activation in age-related retinal disease. Aging 3: 346–347.
[51]  Zhu X, Wu K, Rife L, Cawley NX, Brown B, et al. (2005) Carboxypeptidase E is required for normal synaptic transmission from photoreceptors to the inner retina. J Neurochem. 95: 1351–1362. doi: 10.1111/j.1471-4159.2005.03460.x
[52]  Sonoda S, Spee C, Barron E, Ryan SJ, Kannan R, et al. (2009) A protocol for the culture and differentiation of highly polarized human retinal pigment epithelial cells. Nat Protoc 4: 662–673. doi: 10.1038/nprot.2009.33
[53]  Sonoda S, Sreekumar PG, Kase S, Spee C, Ryan SJ, et al. (2010) Attainment of polarity promotes growth factor secretion by retinal pigment epithelial cells: relevance to age-related macular degeneration. Aging 2: 28–42.
[54]  Kerur N, Hirano Y, Tarallo V, Fowler BJ, Bastos-Carvalho A, et al. (2013) TLR-independent and P2X7-dependent signaling mediate Alu RNA-induced NLRP3 inflammasome activation in geographic atrophy. Invest Ophthalmol Vis Sci 54: 7395–7401. doi: 10.1167/iovs.13-12500
[55]  Murata T, He S, Hangai M, Ishibashi T, Xi XP, et al. (2000) Peroxisome proliferator-activated receptor-gamma ligands inhibit choroidal neovascularization,. Invest Ophthalmol Vis Sci 41: 2309–2317.
[56]  Cheng HC, Ho TC, Chen SL, Lai HY, Hong KF, et al. (2008) Troglitazone suppresses transforming growth factor beta-mediated fibrogenesis in retinal pigment epithelial cells. Mol Vis14: 95–104.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133