全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Human CD4+ T Cell Responses to the Dog Major Allergen Can f 1 and Its Human Homologue Tear Lipocalin Resemble Each Other

DOI: 10.1371/journal.pone.0098461

Full-Text   Cite this paper   Add to My Lib

Abstract:

Lipocalin allergens form a notable group of proteins, as they contain most of the significant respiratory allergens from mammals. The basis for the allergenic capacity of allergens in the lipocalin family, that is, the development of T-helper type 2 immunity against them, is still unresolved. As immunogenicity has been proposed to be a decisive feature of allergens, the purpose of this work was to examine human CD4+ T cell responses to the major dog allergen Can f 1 and to compare them with those to its human homologue, tear lipocalin (TL). For this, specific T cell lines were induced in vitro from the peripheral blood mononuclear cells of Can f 1-allergic and healthy dog dust-exposed subjects with peptides containing the immunodominant T cell epitopes of Can f 1 and the corresponding TL peptides. We found that the frequency of Can f 1 and TL-specific T cells in both subject groups was low and close to each other, the difference being about two-fold. Importantly, we found that the proliferative responses of both Can f 1 and TL-specific T cell lines from allergic subjects were stronger than those from healthy subjects, but that the strength of the responses within the subject groups did not differ between these two antigens. Moreover, the phenotype of the Can f 1 and TL-specific T cell lines, determined by cytokine production and expression of cell surface markers, resembled each other. The HLA system appeared to have a minimal role in explaining the allergenicity of Can f 1, as the allergic and healthy subjects' HLA background did not differ, and HLA binding was very similar between Can f 1 and TL peptides. Along with existing data on lipocalin allergens, we conclude that strong antigenicity is not decisive for the allergenicity of Can f 1.

References

[1]  Paul W, Zhu J (2010) How are T(H)2-type immune responses initiated and amplified? Nat Rev Immunol 10: 225–235. doi: 10.1038/nri2735
[2]  Holt P, Thomas W (2005) Sensitization to airborne environmental allergens: unresolved issues. Nat Immunol 6: 957–960. doi: 10.1038/ni1005-957
[3]  Akdis C (2006) Allergy and hypersensitivity: mechanisms of allergic disease. Curr Opin Immunol 18: 718–726. doi: 10.1016/j.coi.2006.09.016
[4]  Platts-Mills T (2007) The role of indoor allergens in chronic allergic disease. J Allergy Clin Immunol 119: 297–302. doi: 10.1016/j.jaci.2006.12.647
[5]  Virtanen T, Kinnunen T (2008) Mammalian allergens. In: Lockey RF, Ledford DK, editors. Allergens and Allergen Immunotherapy. New York: Informa Healthcare USA, Inc. pp. 201–218.
[6]  Virtanen T, Kinnunen T, Rytk?nen-Nissinen M (2012) Mammalian lipocalin allergens - insights into their enigmatic allergenicity. Clin Exp Allergy 42: 494–504. doi: 10.1111/j.1365-2222.2011.03903.x
[7]  Hilger C, Kuehn A, Hentges F (2012) Animal Lipocalin Allergens. Curr Allergy Asthma Rep.
[8]  Konieczny A, Morgenstern JP, Bizinkauskas CB, Lilley CH, Brauer AW, et al. (1997) The major dog allergens, Can f 1 and Can f 2, are salivary lipocalin proteins: cloning and immunological characterization of the recombinant forms. Immunology 92: 577–586. doi: 10.1046/j.1365-2567.1997.00386.x
[9]  Gregoire C, Rosinski-Chupin I, Rabillon J, Alzari P, David B, et al. (1996) cDNA cloning and sequencing reveal the major horse allergen Equ c 1 to be a glycoprotein member of the lipocalin superfamily. J Biol Chem 271: 32951–32959. doi: 10.1074/jbc.271.51.32951
[10]  M?ntyj?rvi R, Parkkinen S, Rytk?nen M, Pentik?inen J, Pelkonen J, et al. (1996) Complementary DNA cloning of the predominant allergen of bovine dander: a new member in the lipocalin family. J Allergy Clin Immunol 97: 1297–1303. doi: 10.1016/s0091-6749(96)70198-7
[11]  Arruda L, Vailes L, Hayden M, Benjamin D, Chapman M (1995) Cloning of cockroach allergen, Bla g 4, identifies ligand binding proteins (or calycins) as a cause of IgE antibody responses. J Biol Chem 270: 31196–31201. doi: 10.1074/jbc.270.52.31196
[12]  Paddock C, McKerrow J, Hansell E, Foreman K, Hsieh I, et al. (2001) Identification, cloning, and recombinant expression of procalin, a major triatomine allergen. J Immunol 167: 2694–9. doi: 10.4049/jimmunol.167.5.2694
[13]  Hilger C, Bessot J, Hutt N, Grigioni F, de Blay F, et al. (2005) IgE-mediated anaphylaxis caused by bites of the pigeon tick Argas reflexus: cloning and expression of the major allergen Arg r 1. J Allergy Clin Immunol 115: 617–622. doi: 10.1016/j.jaci.2004.11.052
[14]  Tan Y, Chan S, Ong T, Yit le Y, Tiong Y, et al. (2009) Structures of two major allergens, Bla g 4 and Per a 4, from cockroaches and their IgE binding epitopes. J Biol Chem 284: 3148–3157. doi: 10.1074/jbc.m807209200
[15]  Helm RM, Burks AW (2008) Food allergens. In: Lockey RF, Ledford DK, editors. Allergens and Allergen Immunotherapy. New York: Informa Healthcare USA, Inc. pp. 219–235.
[16]  Ganfornina M, Sanchez D, Greene L, Flower D (2006) The lipocalin protein family: Protein sequence, structure and relationship to the calycin superfamily. In: ?kerstrom B, Borregaard N, Flower D, Salier J-P, editors. Lipocalins. Georgetown, Texas: Landes Bioscience. pp. 17–27.
[17]  Virtanen T, Kinnunen T, Rytk?nen-Nissinen M (2014) Mammalian allergens. In: Lockey RF, Ledford DK, editors. Allergens and Allergen Immunotherapy: Subcutaneous, Sublingual and Oral. Taylor and Francis (in press).
[18]  Morris GP, Allen PM (2012) How the TCR balances sensitivity and specificity for the recognition of self and pathogens. Nature Immunology 13: 121–128. doi: 10.1038/ni.2190
[19]  da Costa Santiago H, Bennuru S, Ribeiro JMC, Nutman TB (2012) Structural differences between human proteins and aero-and microbial allergens define allergenicity. PLoS ONE 7: e40552. doi: 10.1371/journal.pone.0040552
[20]  Radauer C, Bublin M, Wagner S, Mari A, Breiteneder H (2008) Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J Allergy Clin Immunol 121: 847–52e847. doi: 10.1016/j.jaci.2008.01.025
[21]  Emanuelsson C, Spangfort M (2007) Allergens as eukaryotic proteins lacking bacterial homologues. Mol Immunol 44: 3256–3260. doi: 10.1016/j.molimm.2007.01.019
[22]  Epton MJ, Smith W, Hales BJ, Hazell L, Thompson PJ, et al. (2002) Non-allergenic antigen in allergic sensitization: responses to the mite ferritin heavy chain antigen by allergic and non-allergic subjects. Clin Exp Allergy 32: 1341–1347. doi: 10.1046/j.1365-2222.2002.01473.x
[23]  Oseroff C, Sidney J, Tripple V, Grey H, Wood R, et al. (2012) Analysis of T cell responses to the major allergens from German cockroach: epitope specificity and relationship to IgE production. J Immunol 189: 679–688. doi: 10.4049/jimmunol.1200694
[24]  Ferreira F, Hirtenlehner K, Jilek A, Godnik-Cvar J, Breiteneder H, et al. (1996) Dissection of immunoglobulin E and T lymphocyte reactivity of isoforms of the major birch pollen allergen Bet v 1: potential use of hypoallergenic isoforms for immunotherapy. J Exp Med 183: 599–609. doi: 10.1084/jem.183.2.599
[25]  Oseroff C, Sidney J, Kotturi MF, Kolla R, Alam R, et al. (2010) Molecular determinants of T cell epitope recognition to the common timothy grass allergen. J Immunol 185: 943–955. doi: 10.4049/jimmunol.1000405
[26]  Saarelainen S, Taivainen A, Rytk?nen-Nissinen M, Auriola S, Immonen A, et al. (2004) Assessment of recombinant dog allergens Can f 1 and Can f 2 for the diagnosis of dog allergy. Clin Exp Allergy 34: 1576–1582. doi: 10.1111/j.1365-2222.2004.02071.x
[27]  Saarelainen S, Rytk?nen-Nissinen M, Rouvinen J, Taivainen A, Auriola S, et al. (2008) Animal-derived lipocalin allergens exhibit immunoglobulin E cross-reactivity. Clin Exp Allergy 38: 374–381. doi: 10.1111/j.1365-2222.2007.02895.x
[28]  Kauppinen A, Per?saari J, Taivainen A, Kinnunen T, Saarelainen S, et al. (2012) Association of HLA class II alleles with sensitization to cow dander Bos d 2, an important occupational allergen. Immunobiology 217: 8–12. doi: 10.1016/j.imbio.2011.08.012
[29]  Hermann R, Turpeinen H, Laine AP, Veijola R, Knip M, et al. (2003) HLA DR-DQ-encoded genetic determinants of childhood-onset type 1 diabetes in Finland: an analysis of 622 nuclear families. Tissue Antigens 62: 162–169. doi: 10.1034/j.1399-0039.2003.00071.x
[30]  Immonen A, Farci S, Taivainen A, Partanen J, Pouvelle-Moratille S, et al. (2005) T cell epitope-containing peptides of the major dog allergen Can f 1 as candidates for allergen immunotherapy. J Immunol 175: 3614–3620. doi: 10.4049/jimmunol.175.6.3614
[31]  Singh H, Raghava G (2001) ProPred: prediction of HLA-DR binding sites. Bioinformatics 17: 1236–1237. doi: 10.1093/bioinformatics/17.12.1236
[32]  Gelder CM, Lamb JR, Askonas BA (1996) Human CD4+ T-cell recognition of influenza A virus hemagglutinin after subunit vaccination. J Virol 70: 4787–4790.
[33]  Danke N, Koelle D, Yee C, Beheray S, Kwok W (2004) Autoreactive T cells in healthy individuals. J Immunol 172: 5967–5972. doi: 10.4049/jimmunol.172.10.5967
[34]  Parviainen S, Taivainen A, Liukko A, Nieminen A, Rytk?nen-Nissinen M, et al. (2010) Comparison of the allergic and nonallergic CD4+ T-cell responses to the major dog allergen Can f 1. J Allergy Clin Immunol 126: 406–408, 408.e1–.e4.
[35]  Texier C, Pouvelle S, Busson M, Herve M, Charron D, et al. (2000) HLA-DR restricted peptide candidates for bee venom immunotherapy. J Immunol 164: 3177–3184. doi: 10.4049/jimmunol.164.6.3177
[36]  Texier C, Pouvelle-Moratille S, Busson M, Charron D, Menez A, et al. (2001) Complementarity and redundancy of the binding specificity of HLA-DRB1, -DRB3, -DRB4 and -DRB5 molecules. Eur J Immunol 31: 1837–46. doi: 10.1002/1521-4141(200106)31:6<1837::aid-immu1837>3.0.co;2-h
[37]  Castelli F, Buhot C, Sanson A, Zarour H, Pouvelle-Moratille S, et al. (2002) HLA-DP4, the most frequent HLA II molecule, defines a new supertype of peptide-binding specificity. J Immunol 169: 6928–6934. doi: 10.4049/jimmunol.169.12.6928
[38]  Bonecchi R, Bianchi G, Bordignon PP, D'Ambrosio D, Lang R, et al. (1998) Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med 187: 129–134. doi: 10.1084/jem.187.1.129
[39]  Sallusto F, Lenig D, Mackay CR, Lanzavecchia A (1998) Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med 187: 875–883. doi: 10.1084/jem.187.6.875
[40]  Virtanen T, Zeiler T, Rautiainen J, M?ntyj?rvi R (1999) Allergy to lipocalins: a consequence of misguided T-cell recognition of self and nonself? Immunol Today 20: 398–400. doi: 10.1016/s0167-5699(99)01515-7
[41]  Virtanen T, Zeiler T, M?ntyj?rvi R (1999) Important animal allergens are lipocalin proteins: Why are they allergenic? Int Arch Allergy Immunol 120: 247–258. doi: 10.1159/000024277
[42]  Virtanen T, Kinnunen T (2007) Not all proteins are created allergens. J Allergy Clin Immunol 120: : 724; authorreply724–authorreply725.
[43]  Pfeiffer C, Stein J, Southwood S, Ketelaar H, Sette A, et al. (1995) Altered peptide ligands can control CD4 T lymphocyte differentiation in vivo. J Exp Med 181: 1569–1574. doi: 10.1084/jem.181.4.1569
[44]  Constant S, Pfeiffer C, Woodard A, Pasqualini T, Bottomly K (1995) Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+ T cells. J Exp Med 182: 1591–1596. doi: 10.1084/jem.182.5.1591
[45]  Hosken N, Shibuya K, Heath A, Murphy K, O'Garra A (1995) The effect of antigen dose on CD4+ T helper cell phenotype development in a T cell receptor-alpha beta-transgenic model. J Exp Med 182: 1579–1584. doi: 10.1084/jem.182.5.1579
[46]  Schountz T, Kasselman J, Martinson F, Brown L, Murray J (1996) MHC genotype controls the capacity of ligand density to switch T helper (Th)-1/Th-2 priming in vivo. J Immunol 157: 3893–3901.
[47]  Rogers P, Croft M (1999) Peptide dose, affinity, and time of differentiation can contribute to the Th1/Th2 cytokine balance. J Immunol 163: 1205–1213.
[48]  Janssen E, van Oosterhout A, van Rensen A, van Eden W, Nijkamp F, et al. (2000) Modulation of Th2 responses by peptide analogues in a murine model of allergic asthma: Amelioration or deterioration of the disease process depends on the Th1 or Th2 skewing characteristics of the therapeutic peptide. J Immunol 164: 580–588. doi: 10.4049/jimmunol.164.2.580
[49]  Brogdon J, Leitenberg D, Bottomly K (2002) The potency of TCR signaling differentially regulates NFATc/p activity and early IL-4 transcription in naive CD4+ T cells. J Immunol 168: 3825–32. doi: 10.4049/jimmunol.168.8.3825
[50]  Milner JD, Fazilleau N, McHeyzer-Williams M, Paul W (2010) Cutting edge: lack of high affinity competition for peptide in polyclonal CD4+ responses unmasks IL-4 production. J Immunol 184: 6569–6573. doi: 10.4049/jimmunol.1000674
[51]  O'Garra A, Gabrysová L, Spits H (2011) Quantitative events determine the differentiation and function of helper T cells. Nat Immunol 12: 288–294. doi: 10.1038/ni.2003
[52]  Yamane H, Paul WE (2012) Cytokines of the γc family control CD4+ T cell differentiation and function. Nat Immunol 13: 1037–1044. doi: 10.1038/ni.2431
[53]  Barber JS, Yokomizo LK, Sheikh V, Freeman AF, Garabedian E, et al. (2013) Peptide library-based evaluation of T-cell receptor breadth detects defects in global and regulatory activation in human immunologic diseases. Proc Natl Acad Sci USA 110: 8164–8169. doi: 10.1073/pnas.1302103110
[54]  Immonen AK, Taivainen AH, N?rv?nen ATO, Kinnunen TT, Saarelainen SA, et al. (2007) Use of multiple peptides containing T cell epitopes is a feasible approach for peptide-based immunotherapy in Can f 1 allergy. Immunology 120: 38–46. doi: 10.1111/j.1365-2567.2006.02475.x
[55]  Kinnunen T, Nieminen A, Kwok WW, N?rv?nen A, Rytk?nen-Nissinen M, et al. (2010) Allergen-specific na?ve and memory CD4+ T cells exhibit functional and phenotypic differences between individuals with or without allergy. Eur J Immunol 40: 2460–2469. doi: 10.1002/eji.201040328
[56]  Bateman EAL, Ardern-Jones MR, Ogg GS (2006) Persistent central memory phenotype of circulating Fel d 1 peptide/DRB1*0101 tetramer-binding CD4+ T cells. J Allergy Clin Immunol 118: 1350–1356. doi: 10.1016/j.jaci.2006.07.040
[57]  Wambre E, Van Overtvelt L, Maill Egrave Re B, Humphreys R, Hofe von E, et al. (2008) Single Cell Assessment of Allergen-Specific T Cell Responses with MHC Class II Peptide Tetramers: Methodological Aspects. Int Arch Allergy Immunol 146: 99–112. doi: 10.1159/000113513
[58]  Van Overtvelt L, Wambre E, Maillère B, Hofe von E, Louise A, et al. (2008) Assessment of Bet v 1-specific CD4+ T cell responses in allergic and nonallergic individuals using MHC class II peptide tetramers. J Immunol 180: 4514–4522. doi: 10.4049/jimmunol.180.7.4514
[59]  Wambre E, Bonvalet M, Bodo V, Maillere B, Leclert G, et al. (2011) Distinct characteristics of seasonal (Bet v 1) vs. perennial (Der p 1/Der p 2) allergen-specific CD4(+) T cell responses. Clin Exp Allergy 41: 192–203. doi: 10.1111/j.1365-2222.2010.03641.x
[60]  Hemmer B, Fleckenstein B, Vergelli M, Jung G, McFarland H, et al. (1997) Identification of high potency microbial and self ligands for a human autoreactive class II-restricted T cell clone. J Exp Med 185: 1651–1659. doi: 10.1084/jem.185.9.1651
[61]  Korb LC, Mirshahidi S, Ramyar K, Akha AAS, Sadegh-Nasseri S (1999) Induction of T cell anergy by low numbers of agonist ligands. 162: 6401–6409.
[62]  Gebe JA, Falk BA, Rock KA, Kochik SA, Heninger AK, et al. (2003) Low-avidity recognition by CD4+ T cells directed to self-antigens. Eur J Immunol 33: 1409–1417. doi: 10.1002/eji.200323871
[63]  Turner S, La Gruta N, Kedzierska K, Thomas P, Doherty P (2009) Functional implications of T cell receptor diversity. Curr Opin Immunol 21: 286–290. doi: 10.1016/j.coi.2009.05.004
[64]  Akdis M, Verhagen J, Taylor A, Karamloo F, Karagiannidis C, et al. (2004) Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells. J Exp Med 199: 1567–1575. doi: 10.1084/jem.20032058
[65]  Wambre E, DeLong JH, James EA, Lafond RE, Robinson D, et al. (2012) Differentiation stage determines pathologic and protective allergen-specific CD4(+) T-cell outcomes during specific immunotherapy. J Allergy Clin Immunol 129: 544–551.e547. doi: 10.1016/j.jaci.2011.08.034
[66]  Parronchi P, Macchia D, Piccinni M-P, Biswas P, Simonelli C, et al. (1991) Allergen- and bacterial antigen-specific T-cell clones established from atopic donors show a different profile of cytokine production. Proc Natl Acad Sci USA 88: 4538–4542. doi: 10.1073/pnas.88.10.4538
[67]  Saarelainen S, Zeiler T, Rautiainen J, N?rv?nen A, Rytk?nen-Nissinen M, et al. (2002) Lipocalin allergen Bos d 2 is a weak immunogen. Int Immunol 14: 401–409. doi: 10.1093/intimm/14.4.401
[68]  Immonen A, Saarelainen S, Rautiainen J, Rytk?nen-Nissinen M, Kinnunen T, et al. (2003) Probing the mechanisms of low immunogenicity of a lipocalin allergen, Bos d 2, in a mouse model. Clin Exp Allergy 33: 834–841. doi: 10.1046/j.1365-2222.2003.01669.x
[69]  Zeiler T, M?ntyj?rvi R, Rautiainen J, Rytk?nen-Nissinen M, Vilja P, et al. (1999) T cell epitopes of a lipocalin allergen colocalize with the conserved regions of the molecule. J Immunol 162: 1415–1422.
[70]  Kinnunen T, Taivainen A, Partanen J, Immonen A, Saarelainen S, et al. (2005) The DR4-DQ8 haplotype and a specific T cell receptor Vbeta T cell subset are associated with absence of allergy to Can f 1. Clin Exp Allergy 35: 797–803. doi: 10.1111/j.1365-2222.2005.02247.x
[71]  Immonen A, Kinnunen T, Sirven P, Taivainen A, Houitte D, et al. (2007) The major horse allergen Equ c 1 contains one immunodominant region of T cell epitopes. Clin Exp Allergy 37: 939–947. doi: 10.1111/j.1365-2222.2007.02722.x
[72]  Jeal H, Draper A, Harris J, Taylor AN, Cullinan P, et al. (2004) Determination of the T cell epitopes of the lipocalin allergen, Rat n 1. Clin Exp Allergy 34: 1919–1925. doi: 10.1111/j.1365-2222.2004.02126.x
[73]  Kinnunen T, Buhot C, N?rv?nen A, Rytk?nen-Nissinen M, Saarelainen S, et al. (2003) The immunodominant epitope of lipocalin allergen Bos d 2 is suboptimal for human T cells. Eur J Immunol 33: 1717–1726. doi: 10.1002/eji.200322952
[74]  Juntunen R, Liukko A, Taivainen A, N?rv?nen A, Durand G, et al. (2009) Suboptimal recognition of a T cell epitope of the major dog allergen Can f 1 by human T cells. Mol Immunol 46: 3320–3327. doi: 10.1016/j.molimm.2009.07.022
[75]  Kinnunen T, Kwok WW, N?rv?nen A, Rytk?nen-Nissinen M, Immonen A, et al. (2005) Immunomodulatory potential of heteroclitic analogs of the dominant T-cell epitope of lipocalin allergen Bos d 2 on specific T cells. Int Immunol 17: 1573–1581. doi: 10.1093/intimm/dxh332
[76]  Parviainen S, Kinnunen T, Rytk?nen-Nissinen M, Nieminen A, Liukko A, et al. (2013) Mammal-derived respiratory lipocalin allergens do not exhibit dendritic cell-activating capacity. Scand J Immunol 77: 171–176. doi: 10.1111/sji.12023
[77]  Bellinghausen I, Brand P, B?ttcher I, Klostermann B, Knop J, et al. (2003) Production of interleukin-13 by human dendritic cells after stimulation with protein allergens is a key factor for induction of T helper 2 cytokines and is associated with activation of signal transducer and activator of transcription-6. Immunology 108: 167–176. doi: 10.1046/j.1365-2567.2003.01576.x
[78]  Smole U, Wagner S, Balazs N, Radauer C, Bublin M, et al. (2010) Bet v 1 and its homologous food allergen Api g 1 stimulate dendritic cells from birch pollen-allergic individuals to induce different Th-cell polarization. Allergy.
[79]  Zaborsky N, Brunner M, Wallner M, Himly M, Karl T, et al. (2010) Antigen aggregation decides the fate of the allergic immune response. J Immunol 184: 725–735. doi: 10.4049/jimmunol.0902080
[80]  Boldogh I, Bacsi A, Choudhury B, Dharajiya N, Alam R, et al. (2005) ROS generated by pollen NADPH oxidase provide a signal that augments antigen-induced allergic airway inflammation. J Clin Invest 115: 2169–2179. doi: 10.1172/jci24422
[81]  Traidl-Hoffmann C, Mariani V, Hochrein H, Karg K, Wagner H, et al. (2005) Pollen-associated phytoprostanes inhibit dendritic cell interleukin-12 production and augment T helper type 2 cell polarization. J Exp Med 201: 627–636. doi: 10.1084/jem.20041065
[82]  Gilles S, Mariani V, Bryce M, Mueller M, Ring J, et al. (2009) Pollen-derived E1-phytoprostanes signal via PPAR-gamma and NF-kappaB-dependent mechanisms. J Immunol 182: 6653–6658. doi: 10.4049/jimmunol.0802613
[83]  Gilles S, Fekete A, Zhang X, Beck I, Blume C, et al. (2011) Pollen metabolome analysis reveals adenosine as a major regulator of dendritic cell-primed T(H) cell responses. J Allergy Clin Immunol 127: 454–461e459. doi: 10.1016/j.jaci.2010.12.1082

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133