全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Differences in Supraspinal and Spinal Excitability during Various Force Outputs of the Biceps Brachii in Chronic- and Non-Resistance Trained Individuals

DOI: 10.1371/journal.pone.0098468

Full-Text   Cite this paper   Add to My Lib

Abstract:

Motor evoked potentials (MEP) and cervicomedullary evoked potentials (CMEP) may help determine the corticospinal adaptations underlying chronic resistance training-induced increases in voluntary force production. The purpose of the study was to determine the effect of chronic resistance training on corticospinal excitability (CE) of the biceps brachii during elbow flexion contractions at various intensities and the CNS site (i.e. supraspinal or spinal) predominantly responsible for any training-induced differences in CE. Fifteen male subjects were divided into two groups: 1) chronic resistance-trained (RT), (n = 8) and 2) non-RT, (n = 7). Each group performed four sets of ~5 s elbow flexion contractions of the dominant arm at 10 target forces (from 10%–100% MVC). During each contraction, subjects received 1) transcranial magnetic stimulation, 2) transmastoid electrical stimulation and 3) brachial plexus electrical stimulation, to determine MEP, CMEP and compound muscle action potential (Mmax) amplitudes, respectively, of the biceps brachii. All MEP and CMEP amplitudes were normalized to Mmax. MEP amplitudes were similar in both groups up to 50% MVC, however, beyond 50% MVC, MEP amplitudes were lower in the chronic RT group (p<0.05). CMEP amplitudes recorded from 10–100% MVC were similar for both groups. The ratio of MEP amplitude/absolute force and CMEP amplitude/absolute force were reduced (p<0.012) at all contraction intensities from 10–100% MVC in the chronic-RT compared to the non-RT group. In conclusion, chronic resistance training alters supraspinal and spinal excitability. However, adaptations in the spinal cord (i.e. motoneurone) seem to have a greater influence on the altered CE.

References

[1]  Folland JP, Williams AG (2007) The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med 37: 145–168. doi: 10.2165/00007256-200737020-00004
[2]  Del Balso C, Cafarelli E (2007) Adaptations in the activation of human skeletal muscle induced by short-term isometric resistance training. J Appl Physiol (1985) 103: 402–411. doi: 10.1152/japplphysiol.00477.2006
[3]  Carroll TJ, Selvanayagam VS, Riek S, Semmler JG (2011) Neural adaptations to strength training: moving beyond transcranial magnetic stimulation and reflex studies. Acta physiologica 202: 119–140. doi: 10.1111/j.1748-1716.2011.02271.x
[4]  Carroll TJ, Riek S, Carson RG (2001) Neural adaptations to resistance training: implications for movement control. Sports medicine 31: 829–840. doi: 10.2165/00007256-200131120-00001
[5]  Carroll TJ, Riek S, Carson RG (2002) The sites of neural adaptation induced by resistance training in humans. The Journal of physiology 544: 641–652. doi: 10.1111/j..2002.t01-1-00641.x
[6]  Kidgell DJ, Pearce AJ (2010) Corticospinal properties following short-term strength training of an intrinsic hand muscle. Human movement science 29: 631–641. doi: 10.1016/j.humov.2010.01.004
[7]  Carroll TJ, Barton J, Hsu M, Lee M (2009) The effect of strength training on the force of twitches evoked by corticospinal stimulation in humans. Acta physiologica 197: 161–173. doi: 10.1111/j.1748-1716.2009.01992.x
[8]  Kidgell DJ, Stokes MA, Castricum TJ, Pearce AJ (2010) Neurophysiological responses after short-term strength training of the biceps brachii muscle. Journal of strength and conditioning research/National Strength & Conditioning Association 24: 3123–3132. doi: 10.1519/jsc.0b013e3181f56794
[9]  Jensen JL, Marstrand PC, Nielsen JB (2005) Motor skill training and strength training are associated with different plastic changes in the central nervous system. J Appl Physiol (1985) 99: 1558–1568. doi: 10.1152/japplphysiol.01408.2004
[10]  Weier AT, Pearce AJ, Kidgell DJ (2012) Strength training reduces intracortical inhibition. Acta Physiol (Oxf) 206: 109–119. doi: 10.1111/j.1748-1716.2012.02454.x
[11]  Goodwill AM, Pearce AJ, Kidgell DJ (2012) Corticomotor plasticity following unilateral strength training. Muscle & nerve 46: 384–393. doi: 10.1002/mus.23316
[12]  Griffin L, Cafarelli E (2007) Transcranial magnetic stimulation during resistance training of the tibialis anterior muscle. J Electromyogr Kinesiol 17: 446–452. doi: 10.1016/j.jelekin.2006.05.001
[13]  Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002) Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. J Appl Physiol (1985) 92: 2309–2318. doi: 10.1097/00005768-200205001-00653
[14]  Beck S, Taube W, Gruber M, Amtage F, Gollhofer A, et al. (2007) Task-specific changes in motor evoked potentials of lower limb muscles after different training interventions. Brain Res 1179: 51–60. doi: 10.1016/j.brainres.2007.08.048
[15]  McNeil CJ, Giesebrecht S, Gandevia SC, Taylor JL (2011) Behaviour of the motoneurone pool in a fatiguing submaximal contraction. The Journal of physiology 589: 3533–3544. doi: 10.1113/jphysiol.2011.207191
[16]  Martin PG, Hudson AL, Gandevia SC, Taylor JL (2009) Reproducible measurement of human motoneuron excitability with magnetic stimulation of the corticospinal tract. Journal of neurophysiology 102: 606–613. doi: 10.1152/jn.91348.2008
[17]  Tallent J, Goodall S, Hortobagyi T, St Clair Gibson A, Howatson G (2013) Corticospinal responses of resistance-trained and un-trained males during dynamic muscle contractions. J Electromyogr Kinesiol 23: 1075–1081. doi: 10.1016/j.jelekin.2013.04.014
[18]  del Olmo MF, Reimunde P, Viana O, Acero RM, Cudeiro J (2006) Chronic neural adaptation induced by long-term resistance training in humans. European journal of applied physiology 96: 722–728. doi: 10.1007/s00421-006-0153-5
[19]  Martin PG, Gandevia SC, Taylor JL (2006) Output of human motoneuron pools to corticospinal inputs during voluntary contractions. Journal of neurophysiology 95: 3512–3518. doi: 10.1152/jn.01230.2005
[20]  Oya T, Hoffman BW, Cresswell AG (2008) Corticospinal-evoked responses in lower limb muscles during voluntary contractions at varying strengths. Journal of applied physiology 105: 1527–1532. doi: 10.1152/japplphysiol.90586.2008
[21]  Pearcey GEP, Bradbury-Squires DJ, Monks M, Power KE, Button DC (2013) Does Corticospinal excitability differ in trained and untrained individuals during various contraction intensities? Applied Physiology, Nutrition, and Metabolism 38: 1069.
[22]  Rossi S, Hallett M, Rossini PM, Pascual-Leone A (2011) Screening questionnaire before TMS: an update. Clin Neurophysiol 122: 1686. doi: 10.1016/j.clinph.2010.12.037
[23]  Davidson AW, Rice CL (2010) Effect of shoulder angle on the activation pattern of the elbow extensors during a submaximal isometric fatiguing contraction. Muscle Nerve 42: 514–521. doi: 10.1002/mus.21717
[24]  Gandevia SC, Petersen N, Butler JE, Taylor JL (1999) Impaired response of human motoneurones to corticospinal stimulation after voluntary exercise. J Physiol 521 Pt 3: 749–759. doi: 10.1111/j.1469-7793.1999.00749.x
[25]  Ugawa Y, Rothwell JC, Day BL, Thompson PD, Marsden CD (1991) Percutaneous electrical stimulation of corticospinal pathways at the level of the pyramidal decussation in humans. Ann Neurol 29: 418–427. doi: 10.1002/ana.410290413
[26]  Taylor JL (2006) Stimulation at the cervicomedullary junction in human subjects. Journal of electromyography and kinesiology: official journal of the International Society of Electrophysiological Kinesiology 16: 215–223. doi: 10.1016/j.jelekin.2005.07.001
[27]  Martin PG, Weerakkody N, Gandevia SC, Taylor JL (2008) Group III and IV muscle afferents differentially affect the motor cortex and motoneurones in humans. The Journal of physiology 586: 1277–1289. doi: 10.1113/jphysiol.2007.140426
[28]  Levenez M, Garland SJ, Klass M, Duchateau J (2008) Cortical and spinal modulation of antagonist coactivation during a submaximal fatiguing contraction in humans. J Neurophysiol 99: 554–563. doi: 10.1152/jn.00963.2007
[29]  De Luca CJ, LeFever RS, McCue MP, Xenakis AP (1982) Behaviour of human motor units in different muscles during linearly varying contractions. J Physiol 329: 113–128.
[30]  de Luca CJ, Foley PJ, Erim Z (1996) Motor unit control properties in constant-force isometric contractions. J Neurophysiol 76: 1503–1516.
[31]  Jones KE, Bawa P (1997) Computer simulation of the responses of human motoneurons to composite 1A EPSPS: effects of background firing rate. J Neurophysiol 77: 405–420.
[32]  Matthews PB (1999) The effect of firing on the excitability of a model motoneurone and its implications for cortical stimulation. J Physiol 518 (Pt 3): 867–882. doi: 10.1111/j.1469-7793.1999.0867p.x
[33]  Olivier E, Bawa P, Lemon RN (1995) Excitability of human upper limb motoneurones during rhythmic discharge tested with transcranial magnetic stimulation. The Journal of physiology 485 (Pt 1): 257–269.
[34]  Beaumont E, Gardiner P (2002) Effects of daily spontaneous running on the electrophysiological properties of hindlimb motoneurones in rats. J Physiol 540: 129–138. doi: 10.1113/jphysiol.2001.013084
[35]  Carp JS, Wolpaw JR (1994) Motoneuron plasticity underlying operantly conditioned decrease in primate H-reflex. J Neurophysiol 72: 431–442.
[36]  Van Cutsem M, Duchateau J, Hainaut K (1998) Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol 513 (Pt 1): 295–305. doi: 10.1111/j.1469-7793.1998.295by.x
[37]  Vila-Cha C, Falla D, Farina D (2010) Motor unit behavior during submaximal contractions following six weeks of either endurance or strength training. J Appl Physiol (1985) 109: 1455–1466. doi: 10.1152/japplphysiol.01213.2009
[38]  Beaumont E, Gardiner PF (2003) Endurance training alters the biophysical properties of hindlimb motoneurons in rats. Muscle Nerve 27: 228–236. doi: 10.1002/mus.10308
[39]  Lee RH, Heckman CJ (1998) Bistability in spinal motoneurons in vivo: systematic variations in rhythmic firing patterns. J Neurophysiol 80: 572–582.
[40]  Lee RH, Heckman CJ (1998) Bistability in spinal motoneurons in vivo: systematic variations in persistent inward currents. J Neurophysiol 80: 583–593.
[41]  Heckman CJ, Johnson M, Mottram C, Schuster J (2008) Persistent Inward Currents in Spinal Motoneurons and Their Influence on Human Motoneuron Firing Patterns. Neuroscientist.
[42]  Button DC, Gardiner K, Marqueste T, Gardiner PF (2006) Frequency-current relationships of rat hindlimb {alpha}-motoneurones. J Physiol 573: 663–677. doi: 10.1113/jphysiol.2006.107292
[43]  Gardiner P, Dai Y, Heckman CJ (2006) Effects of exercise training on alpha-motoneurons. J Appl Physiol 101: 1228–1236. doi: 10.1152/japplphysiol.00482.2006
[44]  Heckman CJ (2003) Active conductances in motoneuron dendrites enhance movement capabilities. Exerc Sport Sci Rev 31: 96–101. doi: 10.1097/00003677-200304000-00008
[45]  Khan SI, Giesebrecht S, Gandevia SC, Taylor JL (2012) Activity-dependent depression of the recurrent discharge of human motoneurones after maximal voluntary contractions. J Physiol 590: 4957–4969. doi: 10.1113/jphysiol.2012.235697
[46]  Rossi A, Rossi S, Ginanneschi F (2012) Activity-dependent changes in intrinsic excitability of human spinal motoneurones produced by natural activity. J Neurophysiol 108: 2473–2480. doi: 10.1152/jn.00477.2012
[47]  MacDonell CW, Button DC, Beaumont E, Cormery B, Gardiner PF (2012) Plasticity of rat motoneuron rhythmic firing properties with varying levels of afferent and descending inputs. Journal of neurophysiology 107: 265–272. doi: 10.1152/jn.00122.2011
[48]  Falvo MJ, Sirevaag EJ, Rohrbaugh JW, Earhart GM (2010) Resistance training induces supraspinal adaptations: evidence from movement-related cortical potentials. Eur J Appl Physiol 109: 923–933. doi: 10.1007/s00421-010-1432-8
[49]  McNeil CJ, Butler JE, Taylor JL, Gandevia SC (2013) Testing the excitability of human motoneurons. Frontiers in human neuroscience 7: 152. doi: 10.3389/fnhum.2013.00152
[50]  Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, et al. (1998) Effects of voluntary contraction on descending volleys evoked by transcranial stimulation in conscious humans. The Journal of physiology 508 (Pt 2): 625–633. doi: 10.1111/j.1469-7793.1998.625bq.x
[51]  Taylor JL, Petersen NT, Butler JE, Gandevia SC (2002) Interaction of transcranial magnetic stimulation and electrical transmastoid stimulation in human subjects. J Physiol 541: 949–958. doi: 10.1113/jphysiol.2002.016782
[52]  Mazzocchio R, Rothwell JC, Day BL, Thompson PD (1994) Effect of tonic voluntary activity on the excitability of human motor cortex. J Physiol 474: 261–267.
[53]  Ugawa Y, Terao Y, Hanajima R, Sakai K, Kanazawa I (1995) Facilitatory effect of tonic voluntary contraction on responses to motor cortex stimulation. Electroencephalogr Clin Neurophysiol 97: 451–454. doi: 10.1016/0924-980x(95)00214-6
[54]  Gelli F, Del Santo F, Popa T, Mazzocchio R, Rossi A (2007) Factors influencing the relation between corticospinal output and muscle force during voluntary contractions. Eur J Neurosci 25: 3469–3475. doi: 10.1111/j.1460-9568.2007.05590.x
[55]  Garfinkel S, Cafarelli E (1992) Relative changes in maximal force, EMG, and muscle cross-sectional area after isometric training. Med Sci Sports Exerc 24: 1220–1227. doi: 10.1249/00005768-199211000-00005
[56]  Narici MV, Hoppeler H, Kayser B, Landoni L, Claassen H, et al. (1996) Human quadriceps cross-sectional area, torque and neural activation during 6 months strength training. Acta Physiol Scand 157: 175–186. doi: 10.1046/j.1365-201x.1996.483230000.x
[57]  Hakkinen K, Komi PV (1983) Electromyographic changes during strength training and detraining. Med Sci Sports Exerc 15: 455–460. doi: 10.1249/00005768-198315060-00003
[58]  Enoka RM (1997) Neural adaptations with chronic physical activity. J Biomech 30: 447–455. doi: 10.1016/s0021-9290(96)00170-4
[59]  Carolan B, Cafarelli E (1992) Adaptations in coactivation after isometric resistance training. J Appl Physiol (1985) 73: 911–917.
[60]  Tillin NA, Pain MT, Folland JP (2011) Short-term unilateral resistance training affects the agonist-antagonist but not the force-agonist activation relationship. Muscle Nerve 43: 375–384. doi: 10.1002/mus.21885
[61]  Dragert K, Zehr EP (2013) High-intensity unilateral dorsiflexor resistance training results in bilateral neuromuscular plasticity after stroke. Exp Brain Res 225: 93–104. doi: 10.1007/s00221-012-3351-x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133