全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Mutation in KERA Identified by Linkage Analysis and Targeted Resequencing in a Pedigree with Premature Atherosclerosis

DOI: 10.1371/journal.pone.0098289

Full-Text   Cite this paper   Add to My Lib

Abstract:

Aims Genetic factors explain a proportion of the inter-individual variation in the risk for atherosclerotic events, but the genetic basis of atherosclerosis and atherothrombosis in families with Mendelian forms of premature atherosclerosis is incompletely understood. We set out to unravel the molecular pathology in a large kindred with an autosomal dominant inherited form of premature atherosclerosis. Methods and Results Parametric linkage analysis was performed in a pedigree comprising 4 generations, of which a total of 11 members suffered from premature vascular events. A parametric LOD-score of 3.31 was observed for a 4.4 Mb interval on chromosome 12. Upon sequencing, a non-synonymous variant in KERA (c.920C>G; p.Ser307Cys) was identified. The variant was absent from nearly 28,000 individuals, including 2,571 patients with premature atherosclerosis. KERA, a proteoglycan protein, was expressed in lipid-rich areas of human atherosclerotic lesions, but not in healthy arterial specimens. Moreover, KERA expression in plaques was significantly associated with plaque size in a carotid-collar Apoe?/? mice (r2 = 0.69; p<0.0001). Conclusion A rare variant in KERA was identified in a large kindred with premature atherosclerosis. The identification of KERA in atherosclerotic plaque specimen in humans and mice lends support to its potential role in atherosclerosis.

References

[1]  Lee K, Sung J, Lee SC, Park SW, Kim YS, et al. (2012) Segment-specific carotid intima-media thickness and cardiovascular risk factors in Koreans: the Healthy Twin Study. Eur J Prev Cardiol 19: 1161–1172. doi: 10.1177/1741826711422763
[2]  Sivapalaratnam S, Boekholdt SM, Trip MD, Sandhu MS, Luben R, et al. (2010) Family history of premature coronary heart disease and risk prediction in the EPIC-Norfolk prospective population study. Heart 96: 1985–1989. doi: 10.1136/hrt.2010.210740
[3]  Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, et al. (2009) Finding the missing heritability of complex diseases. Nature 461: 747–753. doi: 10.1038/nature08494
[4]  Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, et al. (2013) Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet 45: 25–33.
[5]  Mani A, Radhakrishnan J, Wang H, Mani A, Mani MA, et al. (2007) LRP6 Mutation in a Family with Early Coronary Disease and Metabolic Risk Factors. Science 315: 1278–1282. doi: 10.1126/science.1136370
[6]  Wang Q, Rao S, Shen GQ, Li L, Moliterno DJ, et al. (2004) Premature myocardial infarction novel susceptibility locus on chromosome 1P34–36 identified by genomewide linkage analysis. Am J Hum Genet 74: 262–271. doi: 10.1086/381560
[7]  Guella I, Rimoldi V, Asselta R, Ardissino D, Francolini M, et al. (2009) Association and functional analyses of MEF2A as a susceptibility gene for premature myocardial infarction and coronary artery disease. Circ Cardiovasc Genet 2: 165–172. doi: 10.1161/circgenetics.108.819326
[8]  Keramati AR, Singh R, Lin A, Faramarzi S, Ye ZJ, et al. (2011) Wild-type LRP6 inhibits, whereas atherosclerosis-linked LRP6R611C increases PDGF-dependent vascular smooth muscle cell proliferation. Proc Natl Acad Sci USA 108: 1914–1918. doi: 10.1073/pnas.1019443108
[9]  Lieb W, Mayer B, Konig IR, Borwitzky I, Gotz A, et al. (2008) Lack of association between the MEF2A gene and myocardial infarction. Circulation 117: 185–191. doi: 10.1161/circulationaha.107.728485
[10]  Liu Y, Niu W, Wu Z, Su X, Chen Q, et al. (2012) Variants in exon 11 of MEF2A gene and coronary artery disease: evidence from a case-control study, systematic review, and meta-analysis. PLoS One 7: e31406. doi: 10.1371/journal.pone.0031406
[11]  Wang L, Fan C, Topol SE, Topol EJ, Wang Q (2003) Mutation of MEF2A in an Inherited Disorder with Features of Coronary Artery Disease. Science 302: 1578–1581. doi: 10.1126/science.1088477
[12]  Huijgen R, Vissers MN, Defesche JC, Lansberg PJ, Kastelein JJ, et al. (2008) Familial hypercholesterolemia: current treatment and advances in management. Expert Rev Cardiovasc Ther 6: 567–581. doi: 10.1586/14779072.6.4.567
[13]  Erdmann J, Stark K, Esslinger UB, Rumpf PM, Koesling D, et al. (2013) Dysfunctional nitric oxide signalling increases risk of myocardial infarction. Nature 504: 432–436. doi: 10.1038/nature12722
[14]  Surendran RP, Visser ME, Heemelaar S, Wang J, Peter J, et al. (2012) Mutations in LPL, APOC2, APOA5, GPIHBP1 and LMF1 in patients with severe hypertriglyceridaemia. J Intern Med 272: 185–196. doi: 10.1111/j.1365-2796.2012.02516.x
[15]  Hauser ER, Mooser V, Crossman DC, Haines JL, Jones CH, et al. (2003) Design of the Genetics of Early Onset Cardiovascular Disease (GENECARD) study. Am Heart J 145: 602–613. doi: 10.1067/mhj.2003.13
[16]  Vergeer M, Boekholdt SM, Sandhu MS, Ricketts SL, Wareham NJ, et al. (2010) Genetic variation at the phospholipid transfer protein locus affects its activity and high-density lipoprotein size and is a novel marker of cardiovascular disease susceptibility. Circulation 122: 470–477. doi: 10.1161/circulationaha.109.912519
[17]  Dendrou CA, Plagnol V, Fung E, Yang JH, Downes K, et al. (2009) Cell-specific protein phenotypes for the autoimmune locus IL2RA using a genotype-selectable human bioresource. Nat Genet 41: 1011–1015. doi: 10.1038/ng.434
[18]  Fu W, O’Connor TD, Jun G, Kang HM, Abecasis G, et al. (2013) Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature 493: 216–220. doi: 10.1038/nature11690
[19]  von der Thusen JH, Van Berkel TJ, Biessen EA (2001) Induction of rapid atherogenesis by perivascular carotid collar placement in apolipoprotein E-deficient and low-density lipoprotein receptor-deficient mice. Circulation 103: 1164–1170. doi: 10.1161/01.cir.103.8.1164
[20]  Gudbjartsson DF, Bjornsdottir US, Halapi E, Helgadottir A, Sulem P, et al. (2009) Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat Genet 41: 342–347. doi: 10.1038/ng.323
[21]  A map of human genome variation from population-scale sequencing. Nature 467: 1061–1073. doi: 10.1038/nature09991
[22]  Scott PG, McEwan PA, Dodd CM, Bergmann EM, Bishop PN, et al. (2004) Crystal structure of the dimeric protein core of decorin, the archetypal small leucine-rich repeat proteoglycan. Proc Natl Acad Sci USA 101: 15633–15638. doi: 10.1073/pnas.0402976101
[23]  Wentz-Hunter K, Cheng EL, Ueda J, Sugar J, Yue BY (2001) Keratocan expression is increased in the stroma of keratoconus corneas. Mol Med 7: 470–477.
[24]  Forsius H, Damsten M, Eriksson AW, Fellman J, Lindh S, et al. (1998) Autosomal recessive cornea plana. A clinical and genetic study of 78 cases in Finland. Acta Ophthalmol Scand 76: 196–203. doi: 10.1034/j.1600-0420.1998.760215.x
[25]  Khan A, Al-Saif A, Kambouris M (2004) A novel KERA mutation associated with autosomal recessive cornea plana. Ophthalmic Genet 25: 147–152. doi: 10.1080/13816810490514397
[26]  Liskova P, Hysi PG, Williams D, Ainsworth JR, Shah S, et al. (2007) Study of p.N247S KERA mutation in a British family with cornea plana. Mol Vis 13: 1339–1347.
[27]  Khan AO, Aldahmesh M, Meyer B (2006) Recessive cornea plana in the Kingdom of Saudi Arabia. Ophthalmology 113: 1773–1778. doi: 10.1016/j.ophtha.2006.04.026
[28]  Dudakova L, Palos M, Hardcastle AJ, Liskova P (2013) Corneal Endothelial Findings in a Czech Patient with Compound Heterozygous Mutations in KERA. Ophthalmic Genet: doi:10.3109/13816810.2013.811272.
[29]  Aldave AJ, Sonmez B, Bourla N, Schultz G, Papp JC, et al. (2007) Autosomal dominant cornea plana is not associated with pathogenic mutations in DCN, DSPG3, FOXC1, KERA, LUM, or PITX2. Ophthalmic Genet 28: 57–67. doi: 10.1080/13816810701351321
[30]  Carlson EC, Sun Y, Auletta J, Kao WW, Liu CY, et al. (2010) Regulation of corneal inflammation by neutrophil-dependent cleavage of keratan sulfate proteoglycans as a model for breakdown of the chemokine gradient. J Leukoc Biol 88: 517–522. doi: 10.1189/jlb.0310134
[31]  Zernecke A, Shagdarsuren E, Weber C (2008) Chemokines in atherosclerosis: an update. Arterioscler Thromb Vasc Biol 28: 1897–1908. doi: 10.1161/atvbaha.107.161174
[32]  Carlson EC, Lin M, Liu CY, Kao WW, Perez VL, et al. (2007) Keratocan and lumican regulate neutrophil infiltration and corneal clarity in lipopolysaccharide-induced keratitis by direct interaction with CXCL1. J Biol Chem 282: 35502–35509. doi: 10.1074/jbc.m705823200
[33]  Zhou Z, Subramanian P, Sevilmis G, Globke B, Soehnlein O, et al. (2011) Lipoprotein-derived lysophosphatidic acid promotes atherosclerosis by releasing CXCL1 from the endothelium. Cell Metab 13: 592–600. doi: 10.1016/j.cmet.2011.02.016
[34]  Boisvert WA, Rose DM, Johnson KA, Fuentes ME, Lira SA, et al. (2006) Up-regulated expression of the CXCR2 ligand KC/GRO-alpha in atherosclerotic lesions plays a central role in macrophage accumulation and lesion progression. Am J Pathol 168: 1385–1395. doi: 10.2353/ajpath.2006.040748
[35]  Boisvert WA, Santiago R, Curtiss LK, Terkeltaub RA (1998) A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptor-deficient mice. J Clin Invest 101: 353–363. doi: 10.1172/jci1195

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133