[1] | Crick F, Koch C (1998) Consciousness and neuroscience. Cereb Cortex 8: 97–107. doi: 10.1093/cercor/8.2.97
|
[2] | Tsuchiya N, Koch C (2005) Continuous flash suppression reduces negative afterimages. Nat Neurosci 8: 1096–1101 doi:10.1038/nn1500.
|
[3] | Jiang Y, Costello P, Fang F, Huang M, He S (2006) A gender- and sexual orientation-dependent spatial attentional effect of invisible images. Proc Natl Acad Sci U S A 103: 17048–17052 doi:10.1073/pnas.0605678103.
|
[4] | Bahrami B, Carmel D, Walsh V, Rees G, Lavie N (2008) Unconscious orientation processing depends on perceptual load. J Vis 8: 1–10 doi:10.1167/8.3.12.
|
[5] | Bahrami B, Carmel D, Walsh V, Rees G, Lavie N (2008) Spatial attention can modulate unconscious orientation processing. Perception 37: 1520–1528. doi: 10.1068/p5999
|
[6] | Maruya K, Watanabe H, Watanabe M (2008) Adaptation to invisible motion results in low-level but not high-level aftereffects. J Vis 8: 1–11 doi:10.1167/8.11.7.
|
[7] | Kaunitz L, Fracasso A, Melcher D (2011) Unseen complex motion is modulated by attention and generates a visible aftereffect. J Vis 11. doi:10.1167/11.13.10.
|
[8] | Kawabe T, Yamada Y (2009) Invisible motion contributes to simultaneous motion contrast. Conscious Cogn 18: 168–175 doi:10.1016/j.concog.2008.12.004.
|
[9] | Moradi F, Koch C, Shimojo S (2005) Face adaptation depends on seeing the face. Neuron 45: 169–175 doi:10.1016/j.neuron.2004.12.018.
|
[10] | Adams WJ, Gray KLH, Garner M, Graf EW (2010) High-level face adaptation without awareness. Psychol Sci 21: 205–210 doi:10.1177/0956797609359508.
|
[11] | Yang E, Hong S-W, Blake R (2010) Adaptation aftereffects to facial expressions suppressed from visual awareness. J Vis 10: 1–13 doi:10.1167/10.12.24.
|
[12] | Yan X, Jiang Y, Wang J, Deng Y, He S, et al. (2009) Preconscious attentional bias in cigarette smokers: A probe into awareness modulation on attentional bias. Addict Biol 14: 478–488 doi:10.1111/j.1369-1600.2009.00172.x.
|
[13] | Stein T, Hebart MN, Sterzer P (2011) Breaking continuous flash suppression: A new measure of unconscious processing during interocular suppression? Front Hum Neurosci 5. doi:10.3389/fnhum.2011.00167.
|
[14] | Jiang Y, Costello P, He S (2007) Processing of invisible stimuli: Advantage of upright faces and recognizable words in overcoming interocular suppression. Psychol Sci 18: 349–355 doi:10.1111/j.1467-9280.2007.01902.x.
|
[15] | Costello P, Jiang Y, Baartman B, McGlennen K, He S (2009) Semantic and subword priming during binocular suppression. Conscious Cogn 18: 375–382 doi:10.1016/j.concog.2009.02.003.
|
[16] | Bahrami B, Vetter P, Spolaore E, Pagano S, Butterworth B, et al. (2010) Unconscious numerical priming despite interocular suppression. Psychol Sci 21: 224–233 doi:10.1177/0956797609360664.
|
[17] | Xu S, Zhang S, Geng H (2011) Gaze-induced joint attention persists under high perceptual load and does not depend on awareness. Vision Res 51: 2048–2056 doi:10.1016/j.visres.2011.07.023.
|
[18] | Wang L, Weng X, He S (2012) Perceptual grouping without awareness: Superiority of Kanizsa triangle in breaking interocular suppression. PLoS ONE 7: e40106 doi:10.1371/journal.pone.0040106.
|
[19] | Mudrik L, Breska A, Lamy D, Deouell LY (2011) Integration without awareness: Expanding the limits of unconscious processing. Psychol Sci 22: 764–770 doi:10.1177/0956797611408736.
|
[20] | Bahrami B, Lavie N, Rees G (2007) Attentional load modulates responses of human primary visual cortex to invisible stimuli. Curr Biol 17: 509–513 doi:10.1016/j.cub.2007.01.070.
|
[21] | Raio CM, Carmel D, Carrasco M, Phelps EA (2012) Nonconscious fear is quickly acquired but swiftly forgotten. Curr Biol 22: R477–479 doi:10.1016/j.cub.2012.04.023.
|
[22] | Faivre N, Berthet V, Kouider S (2012) Nonconscious influences from emotional faces: A comparison of visual crowding, masking, and continuous flash suppression. Front Conscious Res 3. doi:10.3389/fpsyg.2012.00129.
|
[23] | Hesselmann G, Malach R (2011) The link between fMRI-BOLD activation and perceptual awareness is “stream-invariant” in the human visual system. Cereb Cortex 21: 2829–2837 doi:10.1093/cercor/bhr085.
|
[24] | Hesselmann G, Hebart M, Malach R (2011) Differential BOLD activity associated with subjective and objective reports during “blindsight” in normal observers. J Neurosci 31: 12936–12944 doi:10.1523/JNEUROSCI.1556-11.2011.
|
[25] | Seitz AR, Kim D, Watanabe T (2009) Rewards evoke learning of unconsciously processed visual stimuli in adult humans. Neuron 61: 700–707 doi:10.1016/j.neuron.2009.01.016.
|
[26] | Shimaoka D, Kaneko K (2011) Dynamical systems modeling of continuous flash suppression. Vision Res 51: 521–528 doi:10.1016/j.visres.2011.01.009.
|
[27] | Yamada Y, Kawabe T (2012) Illusory line motion and transformational apparent motion during continuous flash suppression. Jpn Psychol Res 54: 348–359. doi: 10.1111/j.1468-5884.2012.00512.x
|
[28] | Yamada Y, Kawabe T (2011) Emotion colors time perception unconsciously. Conscious Cogn 20: 1835–1841 doi:10.1016/j.concog.2011.06.016.
|
[29] | Tsuchiya N, Koch C, Gilroy LA, Blake R (2006) Depth of interocular suppression associated with continuous flash suppression, flash suppression, and binocular rivalry. J Vis 6: 1068–1078 doi:10.1167/6.10.6.
|
[30] | Yang E, Blake R (2012) Deconstructing continuous flash suppression. J Vis 12: 1–14 doi:10.1167/12.3.8.
|
[31] | Blake R (1989) A neural theory of binocular rivalry. Psychol Rev 96: 145–167. doi: 10.1037//0033-295x.96.1.145
|
[32] | Alais D (2012) Binocular rivalry: competition and inhibition in visual perception. Wiley Interdiscip Rev Cogn Sci 3: 87–103 doi:10.1002/wcs.151.
|
[33] | Blake R, Logothetis NK (2002) Visual competition. Nat Rev Neurosci 3: 13–21 doi:10.1038/nrn701.
|
[34] | Tong F, Meng M, Blake R (2006) Neural bases of binocular rivalry. Trends Cogn Sci 10: 502–511 doi:10.1016/j.tics.2006.09.003.
|
[35] | Sweeny TD, Grabowecky M, Suzuki S (2011) Awareness becomes necessary between adaptive pattern coding of open and closed curvatures. Psychol Sci 22: 943–950 doi:10.1177/0956797611413292.
|
[36] | Hong SW, Blake R (2009) Interocular suppression differentially affects achromatic and chromatic mechanisms. Atten Percept Psychophys 71: 403–411 doi:10.3758/APP.71.2.403.
|
[37] | Maehara G, Huang P-C, Hess RF (2009) Importance of phase alignment for interocular suppression. Vision Res 49: 1838–1847 doi:10.1016/j.visres.2009.04.020.
|
[38] | Alais D, Melcher D (2007) Strength and coherence of binocular rivalry depends on shared stimulus complexity. Vision Res 47: 269–279 doi:10.1016/j.visres.2006.09.003.
|
[39] | Alais D, Parker A (2006) Independent binocular rivalry processes for motion and form. Neuron 52: 911–920 doi:10.1016/j.neuron.2006.10.027.
|
[40] | Stuit SM, Cass J, Paffen CLE, Alais D (2009) Orientation-tuned suppression in binocular rivalry reveals general and specific components of rivalry suppression. J Vis 9: 1–15 doi:10.1167/9.11.17.
|
[41] | Porta IB (1593) De refractione optices parte libri novem. Naples: Apud Io Iacobum Carlinum & Antonium Pacem.
|
[42] | Levitt H (1971) Transformed up-down methods in psychoacoustics. J Acoust Soc Am 49: 467–477. doi: 10.1121/1.1912375
|
[43] | Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2: 1019–1025 doi:10.1038/14819.
|
[44] | Zito T, Wilbert N, Wiskott L, Berkes P (2009) Modular toolkit for data processing (MDP): a Python data processing framework. Front Neuroinformatics 2: 8 doi:10.3389/neuro.11.008.2008.
|
[45] | Giaschi D, Douglas R, Marlin S, Cynader M (1993) The time course of direction-selective adaptation in simple and complex cells in cat striate cortex. J Neurophysiol 70: 2024–2034.
|
[46] | Kruschke JK (2010) Doing Bayesian Data Analysis: A Tutorial with R and BUGS. 1st ed. Academic Press.
|
[47] | Wagenmakers E-J (2007) A practical solution to the pervasive problems of p values. Psychon Bull Rev 14: 779–804. doi: 10.3758/bf03194105
|
[48] | Kruschke JK (2010) What to believe: Bayesian methods for data analysis. Trends Cogn Sci 14: 293–300 doi:10.1016/j.tics.2010.05.001.
|
[49] | Rouder JN, Speckman PL, Sun D, Morey RD, Iverson G (2009) Bayesian t tests for accepting and rejecting the null hypothesis. Psychon Bull Rev 16: 225–237 doi:10.3758/PBR.16.2.225.
|
[50] | Rozeboom WW (1960) The fallacy of the null-hypothesis significance test. Psychol Bull 57: 416–428 doi:10.1037/h0042040.
|
[51] | Rolfs M, Dambacher M, Cavanagh P (2013) Visual adaptation of the perception of causality. Curr Biol 23: 250–254 doi:10.1016/j.cub.2012.12.017.
|
[52] | Rouder JN, Morey RD, Speckman PL, Province JM (2012) Default Bayes factors for ANOVA designs. J Math Psychol 56: 356–374 doi:10.1016/j.jmp.2012.08.001.
|
[53] | Gelman A (2005) Analysis of variance–why it is more important than ever. Ann Stat 33: 1–53 doi:10.1214/009053604000001048.
|
[54] | Krekelberg B, Boynton GM, van Wezel RJA (2006) Adaptation: from single cells to BOLD signals. Trends Neurosci 29: 250–256 doi:10.1016/j.tins.2006.02.008.
|
[55] | Krekelberg B, van Wezel RJA, Albright TD (2006) Adaptation in macaque MT reduces perceived speed and improves speed discrimination. J Neurophysiol 95: 255–270 doi:10.1152/jn.00750.2005.
|
[56] | Duncan J, Humphreys GW (1989) Visual search and stimulus similarity. Psychol Rev 96: 433–458. doi: 10.1037/0033-295x.96.3.433
|
[57] | Wilson HR (2007) Minimal physiological conditions for binocular rivalry and rivalry memoy. Vision Res 47: 2741–2750 doi:10.1016/j.visres.2007.07.007.
|