全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Moving Stimuli Are Less Effectively Masked Using Traditional Continuous Flash Suppression (CFS) Compared to a Moving Mondrian Mask (MMM): A Test Case for Feature-Selective Suppression and Retinotopic Adaptation

DOI: 10.1371/journal.pone.0098298

Full-Text   Cite this paper   Add to My Lib

Abstract:

Continuous flash suppression (CFS) is a powerful interocular suppression technique, which is often described as an effective means to reliably suppress stimuli from visual awareness. Suppression through CFS has been assumed to depend upon a reduction in (retinotopically specific) neural adaptation caused by the continual updating of the contents of the visual input to one eye. In this study, we started from the observation that suppressing a moving stimulus through CFS appeared to be more effective when using a mask that was actually more prone to retinotopically specific neural adaptation, but in which the properties of the mask were more similar to those of the to-be-suppressed stimulus. In two experiments, we find that using a moving Mondrian mask (i.e., one that includes motion) is more effective in suppressing a moving stimulus than a regular CFS mask. The observed pattern of results cannot be explained by a simple simulation that computes the degree of retinotopically specific neural adaptation over time, suggesting that this kind of neural adaptation does not play a large role in predicting the differences between conditions in this context. We also find some evidence consistent with the idea that the most effective CFS mask is the one that matches the properties (speed) of the suppressed stimulus. These results question the general importance of retinotopically specific neural adaptation in CFS, and potentially help to explain an implicit trend in the literature to adapt one’s CFS mask to match one’s to-be-suppressed stimuli. Finally, the results should help to guide the methodological development of future research where continuous suppression of moving stimuli is desired.

References

[1]  Crick F, Koch C (1998) Consciousness and neuroscience. Cereb Cortex 8: 97–107. doi: 10.1093/cercor/8.2.97
[2]  Tsuchiya N, Koch C (2005) Continuous flash suppression reduces negative afterimages. Nat Neurosci 8: 1096–1101 doi:10.1038/nn1500.
[3]  Jiang Y, Costello P, Fang F, Huang M, He S (2006) A gender- and sexual orientation-dependent spatial attentional effect of invisible images. Proc Natl Acad Sci U S A 103: 17048–17052 doi:10.1073/pnas.0605678103.
[4]  Bahrami B, Carmel D, Walsh V, Rees G, Lavie N (2008) Unconscious orientation processing depends on perceptual load. J Vis 8: 1–10 doi:10.1167/8.3.12.
[5]  Bahrami B, Carmel D, Walsh V, Rees G, Lavie N (2008) Spatial attention can modulate unconscious orientation processing. Perception 37: 1520–1528. doi: 10.1068/p5999
[6]  Maruya K, Watanabe H, Watanabe M (2008) Adaptation to invisible motion results in low-level but not high-level aftereffects. J Vis 8: 1–11 doi:10.1167/8.11.7.
[7]  Kaunitz L, Fracasso A, Melcher D (2011) Unseen complex motion is modulated by attention and generates a visible aftereffect. J Vis 11. doi:10.1167/11.13.10.
[8]  Kawabe T, Yamada Y (2009) Invisible motion contributes to simultaneous motion contrast. Conscious Cogn 18: 168–175 doi:10.1016/j.concog.2008.12.004.
[9]  Moradi F, Koch C, Shimojo S (2005) Face adaptation depends on seeing the face. Neuron 45: 169–175 doi:10.1016/j.neuron.2004.12.018.
[10]  Adams WJ, Gray KLH, Garner M, Graf EW (2010) High-level face adaptation without awareness. Psychol Sci 21: 205–210 doi:10.1177/0956797609359508.
[11]  Yang E, Hong S-W, Blake R (2010) Adaptation aftereffects to facial expressions suppressed from visual awareness. J Vis 10: 1–13 doi:10.1167/10.12.24.
[12]  Yan X, Jiang Y, Wang J, Deng Y, He S, et al. (2009) Preconscious attentional bias in cigarette smokers: A probe into awareness modulation on attentional bias. Addict Biol 14: 478–488 doi:10.1111/j.1369-1600.2009.00172.x.
[13]  Stein T, Hebart MN, Sterzer P (2011) Breaking continuous flash suppression: A new measure of unconscious processing during interocular suppression? Front Hum Neurosci 5. doi:10.3389/fnhum.2011.00167.
[14]  Jiang Y, Costello P, He S (2007) Processing of invisible stimuli: Advantage of upright faces and recognizable words in overcoming interocular suppression. Psychol Sci 18: 349–355 doi:10.1111/j.1467-9280.2007.01902.x.
[15]  Costello P, Jiang Y, Baartman B, McGlennen K, He S (2009) Semantic and subword priming during binocular suppression. Conscious Cogn 18: 375–382 doi:10.1016/j.concog.2009.02.003.
[16]  Bahrami B, Vetter P, Spolaore E, Pagano S, Butterworth B, et al. (2010) Unconscious numerical priming despite interocular suppression. Psychol Sci 21: 224–233 doi:10.1177/0956797609360664.
[17]  Xu S, Zhang S, Geng H (2011) Gaze-induced joint attention persists under high perceptual load and does not depend on awareness. Vision Res 51: 2048–2056 doi:10.1016/j.visres.2011.07.023.
[18]  Wang L, Weng X, He S (2012) Perceptual grouping without awareness: Superiority of Kanizsa triangle in breaking interocular suppression. PLoS ONE 7: e40106 doi:10.1371/journal.pone.0040106.
[19]  Mudrik L, Breska A, Lamy D, Deouell LY (2011) Integration without awareness: Expanding the limits of unconscious processing. Psychol Sci 22: 764–770 doi:10.1177/0956797611408736.
[20]  Bahrami B, Lavie N, Rees G (2007) Attentional load modulates responses of human primary visual cortex to invisible stimuli. Curr Biol 17: 509–513 doi:10.1016/j.cub.2007.01.070.
[21]  Raio CM, Carmel D, Carrasco M, Phelps EA (2012) Nonconscious fear is quickly acquired but swiftly forgotten. Curr Biol 22: R477–479 doi:10.1016/j.cub.2012.04.023.
[22]  Faivre N, Berthet V, Kouider S (2012) Nonconscious influences from emotional faces: A comparison of visual crowding, masking, and continuous flash suppression. Front Conscious Res 3. doi:10.3389/fpsyg.2012.00129.
[23]  Hesselmann G, Malach R (2011) The link between fMRI-BOLD activation and perceptual awareness is “stream-invariant” in the human visual system. Cereb Cortex 21: 2829–2837 doi:10.1093/cercor/bhr085.
[24]  Hesselmann G, Hebart M, Malach R (2011) Differential BOLD activity associated with subjective and objective reports during “blindsight” in normal observers. J Neurosci 31: 12936–12944 doi:10.1523/JNEUROSCI.1556-11.2011.
[25]  Seitz AR, Kim D, Watanabe T (2009) Rewards evoke learning of unconsciously processed visual stimuli in adult humans. Neuron 61: 700–707 doi:10.1016/j.neuron.2009.01.016.
[26]  Shimaoka D, Kaneko K (2011) Dynamical systems modeling of continuous flash suppression. Vision Res 51: 521–528 doi:10.1016/j.visres.2011.01.009.
[27]  Yamada Y, Kawabe T (2012) Illusory line motion and transformational apparent motion during continuous flash suppression. Jpn Psychol Res 54: 348–359. doi: 10.1111/j.1468-5884.2012.00512.x
[28]  Yamada Y, Kawabe T (2011) Emotion colors time perception unconsciously. Conscious Cogn 20: 1835–1841 doi:10.1016/j.concog.2011.06.016.
[29]  Tsuchiya N, Koch C, Gilroy LA, Blake R (2006) Depth of interocular suppression associated with continuous flash suppression, flash suppression, and binocular rivalry. J Vis 6: 1068–1078 doi:10.1167/6.10.6.
[30]  Yang E, Blake R (2012) Deconstructing continuous flash suppression. J Vis 12: 1–14 doi:10.1167/12.3.8.
[31]  Blake R (1989) A neural theory of binocular rivalry. Psychol Rev 96: 145–167. doi: 10.1037//0033-295x.96.1.145
[32]  Alais D (2012) Binocular rivalry: competition and inhibition in visual perception. Wiley Interdiscip Rev Cogn Sci 3: 87–103 doi:10.1002/wcs.151.
[33]  Blake R, Logothetis NK (2002) Visual competition. Nat Rev Neurosci 3: 13–21 doi:10.1038/nrn701.
[34]  Tong F, Meng M, Blake R (2006) Neural bases of binocular rivalry. Trends Cogn Sci 10: 502–511 doi:10.1016/j.tics.2006.09.003.
[35]  Sweeny TD, Grabowecky M, Suzuki S (2011) Awareness becomes necessary between adaptive pattern coding of open and closed curvatures. Psychol Sci 22: 943–950 doi:10.1177/0956797611413292.
[36]  Hong SW, Blake R (2009) Interocular suppression differentially affects achromatic and chromatic mechanisms. Atten Percept Psychophys 71: 403–411 doi:10.3758/APP.71.2.403.
[37]  Maehara G, Huang P-C, Hess RF (2009) Importance of phase alignment for interocular suppression. Vision Res 49: 1838–1847 doi:10.1016/j.visres.2009.04.020.
[38]  Alais D, Melcher D (2007) Strength and coherence of binocular rivalry depends on shared stimulus complexity. Vision Res 47: 269–279 doi:10.1016/j.visres.2006.09.003.
[39]  Alais D, Parker A (2006) Independent binocular rivalry processes for motion and form. Neuron 52: 911–920 doi:10.1016/j.neuron.2006.10.027.
[40]  Stuit SM, Cass J, Paffen CLE, Alais D (2009) Orientation-tuned suppression in binocular rivalry reveals general and specific components of rivalry suppression. J Vis 9: 1–15 doi:10.1167/9.11.17.
[41]  Porta IB (1593) De refractione optices parte libri novem. Naples: Apud Io Iacobum Carlinum & Antonium Pacem.
[42]  Levitt H (1971) Transformed up-down methods in psychoacoustics. J Acoust Soc Am 49: 467–477. doi: 10.1121/1.1912375
[43]  Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2: 1019–1025 doi:10.1038/14819.
[44]  Zito T, Wilbert N, Wiskott L, Berkes P (2009) Modular toolkit for data processing (MDP): a Python data processing framework. Front Neuroinformatics 2: 8 doi:10.3389/neuro.11.008.2008.
[45]  Giaschi D, Douglas R, Marlin S, Cynader M (1993) The time course of direction-selective adaptation in simple and complex cells in cat striate cortex. J Neurophysiol 70: 2024–2034.
[46]  Kruschke JK (2010) Doing Bayesian Data Analysis: A Tutorial with R and BUGS. 1st ed. Academic Press.
[47]  Wagenmakers E-J (2007) A practical solution to the pervasive problems of p values. Psychon Bull Rev 14: 779–804. doi: 10.3758/bf03194105
[48]  Kruschke JK (2010) What to believe: Bayesian methods for data analysis. Trends Cogn Sci 14: 293–300 doi:10.1016/j.tics.2010.05.001.
[49]  Rouder JN, Speckman PL, Sun D, Morey RD, Iverson G (2009) Bayesian t tests for accepting and rejecting the null hypothesis. Psychon Bull Rev 16: 225–237 doi:10.3758/PBR.16.2.225.
[50]  Rozeboom WW (1960) The fallacy of the null-hypothesis significance test. Psychol Bull 57: 416–428 doi:10.1037/h0042040.
[51]  Rolfs M, Dambacher M, Cavanagh P (2013) Visual adaptation of the perception of causality. Curr Biol 23: 250–254 doi:10.1016/j.cub.2012.12.017.
[52]  Rouder JN, Morey RD, Speckman PL, Province JM (2012) Default Bayes factors for ANOVA designs. J Math Psychol 56: 356–374 doi:10.1016/j.jmp.2012.08.001.
[53]  Gelman A (2005) Analysis of variance–why it is more important than ever. Ann Stat 33: 1–53 doi:10.1214/009053604000001048.
[54]  Krekelberg B, Boynton GM, van Wezel RJA (2006) Adaptation: from single cells to BOLD signals. Trends Neurosci 29: 250–256 doi:10.1016/j.tins.2006.02.008.
[55]  Krekelberg B, van Wezel RJA, Albright TD (2006) Adaptation in macaque MT reduces perceived speed and improves speed discrimination. J Neurophysiol 95: 255–270 doi:10.1152/jn.00750.2005.
[56]  Duncan J, Humphreys GW (1989) Visual search and stimulus similarity. Psychol Rev 96: 433–458. doi: 10.1037/0033-295x.96.3.433
[57]  Wilson HR (2007) Minimal physiological conditions for binocular rivalry and rivalry memoy. Vision Res 47: 2741–2750 doi:10.1016/j.visres.2007.07.007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133