全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Altered Synaptic Plasticity in Tourette's Syndrome and Its Relationship to Motor Skill Learning

DOI: 10.1371/journal.pone.0098417

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gilles de la Tourette syndrome is a neuropsychiatric disorder characterized by motor and phonic tics that can be considered motor responses to preceding inner urges. It has been shown that Tourette patients have inferior performance in some motor learning tasks and reduced synaptic plasticity induced by transcranial magnetic stimulation. However, it has not been investigated whether altered synaptic plasticity is directly linked to impaired motor skill acquisition in Tourette patients. In this study, cortical plasticity was assessed by measuring motor-evoked potentials before and after paired associative stimulation in 14 Tourette patients (13 male; age 18–39) and 15 healthy controls (12 male; age 18–33). Tic and urge severity were assessed using the Yale Global Tic Severity Scale and the Premonitory Urges for Tics Scale. Motor learning was assessed 45 minutes after inducing synaptic plasticity and 9 months later, using the rotary pursuit task. On average, long-term potentiation-like effects in response to the paired associative stimulation were present in healthy controls but not in patients. In Tourette patients, long-term potentiation-like effects were associated with more and long-term depression-like effects with less severe urges and tics. While motor learning did not differ between patients and healthy controls 45 minutes after inducing synaptic plasticity, the learning curve of the healthy controls started at a significantly higher level than the Tourette patients' 9 months later. Induced synaptic plasticity correlated positively with motor skills in healthy controls 9 months later. The present study confirms previously found long-term improvement in motor performance after paired associative stimulation in healthy controls but not in Tourette patients. Tourette patients did not show long-term potentiation in response to PAS and also showed reduced levels of motor skill consolidation after 9 months compared to healthy controls. Moreover, synaptic plasticity appears to be related to symptom severity.

References

[1]  DSM-IV (1993) The Tourette Syndrome Classification Study Group. Definitions and classification of tic disorders. Arch Neurol 50: 1013–1016. doi: 10.1001/archneur.1993.00540100012008
[2]  Paszek J, Pollok B, Biermann-Ruben K, Muller-Vahl K, Roessner V, et al. (2010) Is it a tic? Twenty seconds to make a diagnosis. Mov Disord 25: 1106–1108. doi: 10.1002/mds.23053
[3]  Bohlhalter S, Goldfine A, Matteson S, Garraux G, Hanakawa T, et al. (2006) Neural correlates of tic generation in Tourette syndrome: an event-related functional MRI study. Brain 129: 2029–2037. doi: 10.1093/brain/awl050
[4]  Serrien DJ, Nirkko AC, Loher TJ, Lovblad KO, Burgunder JM, et al. (2002) Movement control of manipulative tasks in patients with Gilles de la Tourette syndrome. Brain 125: 290–300. doi: 10.1093/brain/awf024
[5]  Bloch MH, Peterson BS, Scahill L, Otka J, Katsovich L, et al. (2006) Adulthood outcome of tic and obsessive-compulsive symptom severity in children with Tourette syndrome. Arch Pediatr Adolesc Med 160: 65–69. doi: 10.1001/archpedi.160.1.65
[6]  Wu SW, Gilbert DL (2012) Altered neurophysiologic response to intermittent theta burst stimulation in Tourette syndrome. Brain Stimul 5: 315–319. doi: 10.1016/j.brs.2011.04.001
[7]  Suppa A, Belvisi D, Bologna M, Marsili L, Berardelli I, et al. (2011) Abnormal cortical and brain stem plasticity in Gilles de la Tourette syndrome. Mov Disord 26: 1703–1710. doi: 10.1002/mds.23706
[8]  Doyere V, Laroche S (1992) Linear relationship between the maintenance of hippocampal long-term potentiation and retention of an associative memory. Hippocampus 2: 39–48. doi: 10.1002/hipo.450020106
[9]  Morris RG, Davis S, Butcher SP (1990) Hippocampal synaptic plasticity and NMDA receptors: a role in information storage? Philos Trans R Soc Lond B Biol Sci 329: 187–204. doi: 10.1098/rstb.1990.0164
[10]  Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18: 10464–10472.
[11]  Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361: 31–39. doi: 10.1038/361031a0
[12]  Schiller J, Schiller Y, Clapham DE (1998) NMDA receptors amplify calcium influx into dendritic spines during associative pre- and postsynaptic activation. Nat Neurosci 1: 114–118.
[13]  Humeau Y, Herry C, Kemp N, Shaban H, Fourcaudot E, et al. (2005) Dendritic spine heterogeneity determines afferent-specific Hebbian plasticity in the amygdala. Neuron 45: 119–131. doi: 10.1016/j.neuron.2004.12.019
[14]  Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33: 18–41. doi: 10.1038/sj.npp.1301559
[15]  Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232: 331–356. doi: 10.3410/f.13284969.14644069
[16]  Player MJ, Taylor JL, Alonzo A, Loo CK (2012) Paired associative stimulation increases motor cortex excitability more effectively than theta-burst stimulation. Clin Neurophysiol 123: 2220–2226. doi: 10.1016/j.clinph.2012.03.081
[17]  Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123 Pt 3: 572–584. doi: 10.1093/brain/123.3.572
[18]  Wolters A, Sandbrink F, Schlottmann A, Kunesch E, Stefan K, et al. (2003) A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. J Neurophysiol 89: 2339–2345. doi: 10.1152/jn.00900.2002
[19]  Weise D, Schramm A, Beck M, Reiners K, Classen J (2011) Loss of topographic specificity of LTD-like plasticity is a trait marker in focal dystonia. Neurobiol Dis 42: 171–176. doi: 10.1016/j.nbd.2010.11.009
[20]  Weise D, Mann J, Ridding M, Eskandar K, Huss M, et al. (2013) Microcircuit mechanisms involved in paired associative stimulation-induced depression of corticospinal excitability. J Physiol 591: 4903–4920. doi: 10.1113/jphysiol.2013.253989
[21]  Elahi B, Gunraj C, Chen R (2012) Short-interval intracortical inhibition blocks long-term potentiation induced by paired associative stimulation. J Neurophysiol 107: 1935–1941. doi: 10.1152/jn.00202.2011
[22]  Muller-Dahlhaus F, Ziemann U, Classen J (2010) Plasticity resembling spike-timing dependent synaptic plasticity: the evidence in human cortex. Front Synaptic Neurosci 2: 34. doi: 10.3389/fnsyn.2010.00034
[23]  Stefan K, Kunesch E, Benecke R, Cohen LG, Classen J (2002) Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J Physiol 543: 699–708. doi: 10.1113/jphysiol.2002.023317
[24]  Di Lazzaro V, Dileone M, Pilato F, Capone F, Musumeci G, et al. (2011) Modulation of motor cortex neuronal networks by rTMS: comparison of local and remote effects of six different protocols of stimulation. J Neurophysiol 105: 2150–2156. doi: 10.1152/jn.00781.2010
[25]  Russmann H, Lamy JC, Shamim EA, Meunier S, Hallett M (2009) Associative plasticity in intracortical inhibitory circuits in human motor cortex. Clin Neurophysiol 120: 1204–1212. doi: 10.1016/j.clinph.2009.04.005
[26]  Como PG (2005) Neuropsychological Function in Tourette's Syndrome. In: Kurlan R, editor. Handbook of Tourette's Syndrome and Related Tic and Behavioural Disorders. New York. pp. 237–252.
[27]  Bornstein RA, Stefl ME, Hammond L (1990) A survey of Tourette syndrome patients and their families: the 1987 Ohio Tourette Survey. J Neuropsychiatry Clin Neurosci 2: 275–281.
[28]  Bornstein RA (1991) Neuropsychological correlates of obsessive characteristics in Tourette syndrome. J Neuropsychiatry Clin Neurosci 3: 157–162.
[29]  Yeates KO, Bornstein R (1994) Attention deficit disorder and neuropsychological functioning in children with Torette's syndrome. Neuropsychology 8: 65–74. doi: 10.1037//0894-4105.8.1.65
[30]  Neuner I, Arrubla J, Ehlen C, Janouschek H, Nordt C, et al. (2012) Fine motor skills in adult Tourette patients are task-dependent. BMC Neurol 12: 120. doi: 10.1186/1471-2377-12-120
[31]  Ziemann U (2004) LTP-like plasticity in human motor cortex. Suppl Clin Neurophysiol 57: 702–707. doi: 10.1016/s1567-424x(09)70410-6
[32]  Grafton ST, Mazziotta JC, Presty S, Friston KJ, Frackowiak RS, et al. (1992) Functional anatomy of human procedural learning determined with regional cerebral blood flow and PET. J Neurosci 12: 2542–2548.
[33]  Rajji TK, Liu SK, Frantseva MV, Mulsant BH, Thoma J, et al. (2011) Exploring the effect of inducing long-term potentiation in the human motor cortex on motor learning. Brain Stimul 4: 137–144. doi: 10.1016/j.brs.2010.09.007
[34]  Frantseva MV, Fitzgerald PB, Chen R, Moller B, Daigle M, et al. (2008) Evidence for impaired long-term potentiation in schizophrenia and its relationship to motor skill learning. Cereb Cortex 18: 990–996. doi: 10.1093/cercor/bhm151
[35]  Ziemann U, Siebner HR (2008) Modifying motor learning through gating and homeostatic metaplasticity. Brain Stimul 1: 60–66. doi: 10.1016/j.brs.2007.08.003
[36]  Rosenkranz K, Kacar A, Rothwell JC (2007) Differential modulation of motor cortical plasticity and excitability in early and late phases of human motor learning. J Neurosci 27: 12058–12066. doi: 10.1523/jneurosci.2663-07.2007
[37]  Leckman JF, Riddle MA, Hardin MT, Ort SI, Swartz KL, et al. (1989) The Yale Global Tic Severity Scale: initial testing of a clinician-rated scale of tic severity. J Am Acad Child Adolesc Psychiatry 28: 566–573. doi: 10.1097/00004583-198907000-00015
[38]  Robertson MM, Banerjee S, Kurlan R, Cohen DJ, Leckman JF, et al. (1999) The Tourette syndrome diagnostic confidence index: development and clinical associations. Neurology 53: 2108–2112. doi: 10.1212/wnl.53.9.2108
[39]  R?ssner V, Müller-Vahl K, Neuner I (2010) PUTS - premonitory urge tics scale: Fragebogen für Kinder. In: Müller-Vahl K, editor. Tourette-Syndrom und andere Tic-Erkrankungen im Kindes- und Erwachsenenalter. Berlin: MWV Medizinische Wissenschaftliche Verlagsgesellschaft.
[40]  Crossley E, Seri S, Stern JS, Robertson MM, Cavanna AE (2013) Premonitory urges for tics in adult patients with Tourette syndrome. Brain Dev 10.1016/j.braindev.2012.12.010.
[41]  Woods DW, Piacentini J, Himle MB, Chang S (2005) Premonitory Urge for Tics Scale (PUTS): initial psychometric results and examination of the premonitory urge phenomenon in youths with Tic disorders. J Dev Behav Pediatr 26: 397–403. doi: 10.1097/00004703-200512000-00001
[42]  Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9: 97–113. doi: 10.1016/0028-3932(71)90067-4
[43]  Krivanekova L, Lu MK, Bliem B, Ziemann U (2011) Modulation of excitability in human primary somatosensory and motor cortex by paired associative stimulation targeting the primary somatosensory cortex. Eur J Neurosci 34: 1292–1300. doi: 10.1111/j.1460-9568.2011.07849.x
[44]  Muller-Dahlhaus JF, Orekhov Y, Liu Y, Ziemann U (2008) Interindividual variability and age-dependency of motor cortical plasticity induced by paired associative stimulation. Exp Brain Res 187: 467–475. doi: 10.1007/s00221-008-1319-7
[45]  Ziemann U, Ilic TV, Pauli C, Meintzschel F, Ruge D (2004) Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in human motor cortex. J Neurosci 24: 1666–1672. doi: 10.1523/jneurosci.5016-03.2004
[46]  Mueller ST (2012) The PEBL Pursuit Rotor Task. Computer Software retrieved from http://pebl.sourceforge.net.
[47]  Park P, Volianskis A, Sanderson TM, Bortolotto ZA, Jane DE, et al. (2014) NMDA receptor-dependent long-term potentiation comprises a family of temporally overlapping forms of synaptic plasticity that are induced by different patterns of stimulation. Philos Trans R Soc Lond B Biol Sci 369: 20130131. doi: 10.1098/rstb.2013.0131
[48]  Marsh R, Alexander GM, Packard MG, Zhu H, Peterson BS (2005) Perceptual-motor skill learning in Gilles de la Tourette syndrome. Evidence for multiple procedural learning and memory systems. Neuropsychologia 43: 1456–1465. doi: 10.1016/j.neuropsychologia.2004.12.012
[49]  Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391: 892–896.
[50]  Rutherford LC, DeWan A, Lauer HM, Turrigiano GG (1997) Brain-derived neurotrophic factor mediates the activity-dependent regulation of inhibition in neocortical cultures. J Neurosci 17: 4527–4535.
[51]  Turrigiano GG (1999) Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci 22: 221–227. doi: 10.1016/s0166-2236(98)01341-1
[52]  Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2: 32–48.
[53]  Leckman JF (2002) Tourette's syndrome. Lancet 360: 1577–1586. doi: 10.1016/s0140-6736(02)11526-1
[54]  Jackson GM, Mueller SC, Hambleton K, Hollis CP (2007) Enhanced cognitive control in Tourette Syndrome during task uncertainty. Exp Brain Res 182: 357–364. doi: 10.1007/s00221-007-0999-8
[55]  Jackson SR, Parkinson A, Jung J, Ryan SE, Morgan PS, et al. (2011) Compensatory neural reorganization in Tourette syndrome. Curr Biol 21: 580–585. doi: 10.1016/j.cub.2011.02.047
[56]  Sumner P, Nachev P, Morris P, Peters AM, Jackson SR, et al. (2007) Human medial frontal cortex mediates unconscious inhibition of voluntary action. Neuron 54: 697–711. doi: 10.1016/j.neuron.2007.05.016
[57]  Munakata Y, Herd SA, Chatham CH, Depue BE, Banich MT, et al. (2011) A unified framework for inhibitory control. Trends Cogn Sci 15: 453–459. doi: 10.1016/j.tics.2011.07.011
[58]  Jung J, Jackson SR, Parkinson A, Jackson GM (2013) Cognitive control over motor output in Tourette syndrome. Neurosci Biobehav Rev 37: 1016–1025. doi: 10.1016/j.neubiorev.2012.08.009
[59]  Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3 Suppl: 1178–1183
[60]  Potter-Nerger M, Fischer S, Mastroeni C, Groppa S, Deuschl G, et al. (2009) Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs. J Neurophysiol 102: 3180–3190. doi: 10.1152/jn.91046.2008
[61]  Ziemann U, Paulus W, Rothenberger A (1997) Decreased motor inhibition in Tourette's disorder: evidence from transcranial magnetic stimulation. Am J Psychiatry 154: 1277–1284.
[62]  Orth M, Amann B, Robertson MM, Rothwell JC (2005) Excitability of motor cortex inhibitory circuits in Tourette syndrome before and after single dose nicotine. Brain 128: 1292–1300. doi: 10.1093/brain/awh473
[63]  Orth M, Munchau A, Rothwell JC (2008) Corticospinal system excitability at rest is associated with tic severity in tourette syndrome. Biol Psychiatry 64: 248–251. doi: 10.1016/j.biopsych.2007.12.009
[64]  Heise KF, Steven B, Liuzzi G, Thomalla G, Jonas M, et al. (2010) Altered modulation of intracortical excitability during movement preparation in Gilles de la Tourette syndrome. Brain 133: 580–590. doi: 10.1093/brain/awp299
[65]  Orth M, Munchau A (2013) Transcranial magnetic stimulation studies of sensorimotor networks in Tourette syndrome. Behav Neurol 27: 57–64. doi: 10.1155/2013/349137
[66]  Robertson MM (2011) Gilles de la Tourette syndrome: the complexities of phenotype and treatment. Br J Hosp Med (Lond) 72: 100–107. doi: 10.12968/hmed.2011.72.2.100

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133