[1] | DSM-IV (1993) The Tourette Syndrome Classification Study Group. Definitions and classification of tic disorders. Arch Neurol 50: 1013–1016. doi: 10.1001/archneur.1993.00540100012008
|
[2] | Paszek J, Pollok B, Biermann-Ruben K, Muller-Vahl K, Roessner V, et al. (2010) Is it a tic? Twenty seconds to make a diagnosis. Mov Disord 25: 1106–1108. doi: 10.1002/mds.23053
|
[3] | Bohlhalter S, Goldfine A, Matteson S, Garraux G, Hanakawa T, et al. (2006) Neural correlates of tic generation in Tourette syndrome: an event-related functional MRI study. Brain 129: 2029–2037. doi: 10.1093/brain/awl050
|
[4] | Serrien DJ, Nirkko AC, Loher TJ, Lovblad KO, Burgunder JM, et al. (2002) Movement control of manipulative tasks in patients with Gilles de la Tourette syndrome. Brain 125: 290–300. doi: 10.1093/brain/awf024
|
[5] | Bloch MH, Peterson BS, Scahill L, Otka J, Katsovich L, et al. (2006) Adulthood outcome of tic and obsessive-compulsive symptom severity in children with Tourette syndrome. Arch Pediatr Adolesc Med 160: 65–69. doi: 10.1001/archpedi.160.1.65
|
[6] | Wu SW, Gilbert DL (2012) Altered neurophysiologic response to intermittent theta burst stimulation in Tourette syndrome. Brain Stimul 5: 315–319. doi: 10.1016/j.brs.2011.04.001
|
[7] | Suppa A, Belvisi D, Bologna M, Marsili L, Berardelli I, et al. (2011) Abnormal cortical and brain stem plasticity in Gilles de la Tourette syndrome. Mov Disord 26: 1703–1710. doi: 10.1002/mds.23706
|
[8] | Doyere V, Laroche S (1992) Linear relationship between the maintenance of hippocampal long-term potentiation and retention of an associative memory. Hippocampus 2: 39–48. doi: 10.1002/hipo.450020106
|
[9] | Morris RG, Davis S, Butcher SP (1990) Hippocampal synaptic plasticity and NMDA receptors: a role in information storage? Philos Trans R Soc Lond B Biol Sci 329: 187–204. doi: 10.1098/rstb.1990.0164
|
[10] | Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18: 10464–10472.
|
[11] | Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361: 31–39. doi: 10.1038/361031a0
|
[12] | Schiller J, Schiller Y, Clapham DE (1998) NMDA receptors amplify calcium influx into dendritic spines during associative pre- and postsynaptic activation. Nat Neurosci 1: 114–118.
|
[13] | Humeau Y, Herry C, Kemp N, Shaban H, Fourcaudot E, et al. (2005) Dendritic spine heterogeneity determines afferent-specific Hebbian plasticity in the amygdala. Neuron 45: 119–131. doi: 10.1016/j.neuron.2004.12.019
|
[14] | Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33: 18–41. doi: 10.1038/sj.npp.1301559
|
[15] | Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232: 331–356. doi: 10.3410/f.13284969.14644069
|
[16] | Player MJ, Taylor JL, Alonzo A, Loo CK (2012) Paired associative stimulation increases motor cortex excitability more effectively than theta-burst stimulation. Clin Neurophysiol 123: 2220–2226. doi: 10.1016/j.clinph.2012.03.081
|
[17] | Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123 Pt 3: 572–584. doi: 10.1093/brain/123.3.572
|
[18] | Wolters A, Sandbrink F, Schlottmann A, Kunesch E, Stefan K, et al. (2003) A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. J Neurophysiol 89: 2339–2345. doi: 10.1152/jn.00900.2002
|
[19] | Weise D, Schramm A, Beck M, Reiners K, Classen J (2011) Loss of topographic specificity of LTD-like plasticity is a trait marker in focal dystonia. Neurobiol Dis 42: 171–176. doi: 10.1016/j.nbd.2010.11.009
|
[20] | Weise D, Mann J, Ridding M, Eskandar K, Huss M, et al. (2013) Microcircuit mechanisms involved in paired associative stimulation-induced depression of corticospinal excitability. J Physiol 591: 4903–4920. doi: 10.1113/jphysiol.2013.253989
|
[21] | Elahi B, Gunraj C, Chen R (2012) Short-interval intracortical inhibition blocks long-term potentiation induced by paired associative stimulation. J Neurophysiol 107: 1935–1941. doi: 10.1152/jn.00202.2011
|
[22] | Muller-Dahlhaus F, Ziemann U, Classen J (2010) Plasticity resembling spike-timing dependent synaptic plasticity: the evidence in human cortex. Front Synaptic Neurosci 2: 34. doi: 10.3389/fnsyn.2010.00034
|
[23] | Stefan K, Kunesch E, Benecke R, Cohen LG, Classen J (2002) Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J Physiol 543: 699–708. doi: 10.1113/jphysiol.2002.023317
|
[24] | Di Lazzaro V, Dileone M, Pilato F, Capone F, Musumeci G, et al. (2011) Modulation of motor cortex neuronal networks by rTMS: comparison of local and remote effects of six different protocols of stimulation. J Neurophysiol 105: 2150–2156. doi: 10.1152/jn.00781.2010
|
[25] | Russmann H, Lamy JC, Shamim EA, Meunier S, Hallett M (2009) Associative plasticity in intracortical inhibitory circuits in human motor cortex. Clin Neurophysiol 120: 1204–1212. doi: 10.1016/j.clinph.2009.04.005
|
[26] | Como PG (2005) Neuropsychological Function in Tourette's Syndrome. In: Kurlan R, editor. Handbook of Tourette's Syndrome and Related Tic and Behavioural Disorders. New York. pp. 237–252.
|
[27] | Bornstein RA, Stefl ME, Hammond L (1990) A survey of Tourette syndrome patients and their families: the 1987 Ohio Tourette Survey. J Neuropsychiatry Clin Neurosci 2: 275–281.
|
[28] | Bornstein RA (1991) Neuropsychological correlates of obsessive characteristics in Tourette syndrome. J Neuropsychiatry Clin Neurosci 3: 157–162.
|
[29] | Yeates KO, Bornstein R (1994) Attention deficit disorder and neuropsychological functioning in children with Torette's syndrome. Neuropsychology 8: 65–74. doi: 10.1037//0894-4105.8.1.65
|
[30] | Neuner I, Arrubla J, Ehlen C, Janouschek H, Nordt C, et al. (2012) Fine motor skills in adult Tourette patients are task-dependent. BMC Neurol 12: 120. doi: 10.1186/1471-2377-12-120
|
[31] | Ziemann U (2004) LTP-like plasticity in human motor cortex. Suppl Clin Neurophysiol 57: 702–707. doi: 10.1016/s1567-424x(09)70410-6
|
[32] | Grafton ST, Mazziotta JC, Presty S, Friston KJ, Frackowiak RS, et al. (1992) Functional anatomy of human procedural learning determined with regional cerebral blood flow and PET. J Neurosci 12: 2542–2548.
|
[33] | Rajji TK, Liu SK, Frantseva MV, Mulsant BH, Thoma J, et al. (2011) Exploring the effect of inducing long-term potentiation in the human motor cortex on motor learning. Brain Stimul 4: 137–144. doi: 10.1016/j.brs.2010.09.007
|
[34] | Frantseva MV, Fitzgerald PB, Chen R, Moller B, Daigle M, et al. (2008) Evidence for impaired long-term potentiation in schizophrenia and its relationship to motor skill learning. Cereb Cortex 18: 990–996. doi: 10.1093/cercor/bhm151
|
[35] | Ziemann U, Siebner HR (2008) Modifying motor learning through gating and homeostatic metaplasticity. Brain Stimul 1: 60–66. doi: 10.1016/j.brs.2007.08.003
|
[36] | Rosenkranz K, Kacar A, Rothwell JC (2007) Differential modulation of motor cortical plasticity and excitability in early and late phases of human motor learning. J Neurosci 27: 12058–12066. doi: 10.1523/jneurosci.2663-07.2007
|
[37] | Leckman JF, Riddle MA, Hardin MT, Ort SI, Swartz KL, et al. (1989) The Yale Global Tic Severity Scale: initial testing of a clinician-rated scale of tic severity. J Am Acad Child Adolesc Psychiatry 28: 566–573. doi: 10.1097/00004583-198907000-00015
|
[38] | Robertson MM, Banerjee S, Kurlan R, Cohen DJ, Leckman JF, et al. (1999) The Tourette syndrome diagnostic confidence index: development and clinical associations. Neurology 53: 2108–2112. doi: 10.1212/wnl.53.9.2108
|
[39] | R?ssner V, Müller-Vahl K, Neuner I (2010) PUTS - premonitory urge tics scale: Fragebogen für Kinder. In: Müller-Vahl K, editor. Tourette-Syndrom und andere Tic-Erkrankungen im Kindes- und Erwachsenenalter. Berlin: MWV Medizinische Wissenschaftliche Verlagsgesellschaft.
|
[40] | Crossley E, Seri S, Stern JS, Robertson MM, Cavanna AE (2013) Premonitory urges for tics in adult patients with Tourette syndrome. Brain Dev 10.1016/j.braindev.2012.12.010.
|
[41] | Woods DW, Piacentini J, Himle MB, Chang S (2005) Premonitory Urge for Tics Scale (PUTS): initial psychometric results and examination of the premonitory urge phenomenon in youths with Tic disorders. J Dev Behav Pediatr 26: 397–403. doi: 10.1097/00004703-200512000-00001
|
[42] | Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9: 97–113. doi: 10.1016/0028-3932(71)90067-4
|
[43] | Krivanekova L, Lu MK, Bliem B, Ziemann U (2011) Modulation of excitability in human primary somatosensory and motor cortex by paired associative stimulation targeting the primary somatosensory cortex. Eur J Neurosci 34: 1292–1300. doi: 10.1111/j.1460-9568.2011.07849.x
|
[44] | Muller-Dahlhaus JF, Orekhov Y, Liu Y, Ziemann U (2008) Interindividual variability and age-dependency of motor cortical plasticity induced by paired associative stimulation. Exp Brain Res 187: 467–475. doi: 10.1007/s00221-008-1319-7
|
[45] | Ziemann U, Ilic TV, Pauli C, Meintzschel F, Ruge D (2004) Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in human motor cortex. J Neurosci 24: 1666–1672. doi: 10.1523/jneurosci.5016-03.2004
|
[46] | Mueller ST (2012) The PEBL Pursuit Rotor Task. Computer Software retrieved from http://pebl.sourceforge.net.
|
[47] | Park P, Volianskis A, Sanderson TM, Bortolotto ZA, Jane DE, et al. (2014) NMDA receptor-dependent long-term potentiation comprises a family of temporally overlapping forms of synaptic plasticity that are induced by different patterns of stimulation. Philos Trans R Soc Lond B Biol Sci 369: 20130131. doi: 10.1098/rstb.2013.0131
|
[48] | Marsh R, Alexander GM, Packard MG, Zhu H, Peterson BS (2005) Perceptual-motor skill learning in Gilles de la Tourette syndrome. Evidence for multiple procedural learning and memory systems. Neuropsychologia 43: 1456–1465. doi: 10.1016/j.neuropsychologia.2004.12.012
|
[49] | Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391: 892–896.
|
[50] | Rutherford LC, DeWan A, Lauer HM, Turrigiano GG (1997) Brain-derived neurotrophic factor mediates the activity-dependent regulation of inhibition in neocortical cultures. J Neurosci 17: 4527–4535.
|
[51] | Turrigiano GG (1999) Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci 22: 221–227. doi: 10.1016/s0166-2236(98)01341-1
|
[52] | Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2: 32–48.
|
[53] | Leckman JF (2002) Tourette's syndrome. Lancet 360: 1577–1586. doi: 10.1016/s0140-6736(02)11526-1
|
[54] | Jackson GM, Mueller SC, Hambleton K, Hollis CP (2007) Enhanced cognitive control in Tourette Syndrome during task uncertainty. Exp Brain Res 182: 357–364. doi: 10.1007/s00221-007-0999-8
|
[55] | Jackson SR, Parkinson A, Jung J, Ryan SE, Morgan PS, et al. (2011) Compensatory neural reorganization in Tourette syndrome. Curr Biol 21: 580–585. doi: 10.1016/j.cub.2011.02.047
|
[56] | Sumner P, Nachev P, Morris P, Peters AM, Jackson SR, et al. (2007) Human medial frontal cortex mediates unconscious inhibition of voluntary action. Neuron 54: 697–711. doi: 10.1016/j.neuron.2007.05.016
|
[57] | Munakata Y, Herd SA, Chatham CH, Depue BE, Banich MT, et al. (2011) A unified framework for inhibitory control. Trends Cogn Sci 15: 453–459. doi: 10.1016/j.tics.2011.07.011
|
[58] | Jung J, Jackson SR, Parkinson A, Jackson GM (2013) Cognitive control over motor output in Tourette syndrome. Neurosci Biobehav Rev 37: 1016–1025. doi: 10.1016/j.neubiorev.2012.08.009
|
[59] | Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3 Suppl: 1178–1183
|
[60] | Potter-Nerger M, Fischer S, Mastroeni C, Groppa S, Deuschl G, et al. (2009) Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs. J Neurophysiol 102: 3180–3190. doi: 10.1152/jn.91046.2008
|
[61] | Ziemann U, Paulus W, Rothenberger A (1997) Decreased motor inhibition in Tourette's disorder: evidence from transcranial magnetic stimulation. Am J Psychiatry 154: 1277–1284.
|
[62] | Orth M, Amann B, Robertson MM, Rothwell JC (2005) Excitability of motor cortex inhibitory circuits in Tourette syndrome before and after single dose nicotine. Brain 128: 1292–1300. doi: 10.1093/brain/awh473
|
[63] | Orth M, Munchau A, Rothwell JC (2008) Corticospinal system excitability at rest is associated with tic severity in tourette syndrome. Biol Psychiatry 64: 248–251. doi: 10.1016/j.biopsych.2007.12.009
|
[64] | Heise KF, Steven B, Liuzzi G, Thomalla G, Jonas M, et al. (2010) Altered modulation of intracortical excitability during movement preparation in Gilles de la Tourette syndrome. Brain 133: 580–590. doi: 10.1093/brain/awp299
|
[65] | Orth M, Munchau A (2013) Transcranial magnetic stimulation studies of sensorimotor networks in Tourette syndrome. Behav Neurol 27: 57–64. doi: 10.1155/2013/349137
|
[66] | Robertson MM (2011) Gilles de la Tourette syndrome: the complexities of phenotype and treatment. Br J Hosp Med (Lond) 72: 100–107. doi: 10.12968/hmed.2011.72.2.100
|