全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Exploring the Functional Residues in a Flavin-Binding Fluorescent Protein Using Deep Mutational Scanning

DOI: 10.1371/journal.pone.0097817

Full-Text   Cite this paper   Add to My Lib

Abstract:

Flavin mononucleotide (FMN)-based fluorescent proteins are versatile reporters that can monitor various cellular processes in both aerobic and anaerobic conditions. However, the understanding of the role of individual amino acid residues on the protein function has been limited and has restricted the development of better functional variants. Here we examine the functional amino acid residues of Escherichia coli flavin mononucleotide binding fluorescent protein (EcFbFP) using the application of high-throughput sequencing of functional variants, termed deep mutational scanning. The variants were classified into 329 function-retained (FR) and 259 function-loss (FL) mutations, and further the mutational enrichment in each amino acid residues was weighed to find the functionally important residues of EcFbFP. We show that the crucial amino acid residues of EcFbFP lie among the FMN-binding pocket, turns and loops of the protein where conformation changes occur, and spatially clustered residues near the E56-K97 salt bridges. In addition, the mutational sensitivity of the critical residues was confirmed by site-directed mutagenesis. The deep mutational scanning of EcFbFP has demonstrated important implications for constructing better functioning protein variants.

References

[1]  Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312: 217–224. doi: 10.1126/science.1124618
[2]  Sawano A, Miyawaki A (2000) Directed evolution of green fluorescent protein by a new versatile PCR strategy for site-directed and semi-random mutagenesis. Nucleic Acids Res 28: E78. doi: 10.1093/nar/28.16.e78
[3]  Walter J, Hausmann S, Drepper T, Puls M, Eggert T, et al. (2012) Flavin mononucleotide-based fluorescent proteins function in mammalian cells without oxygen requirement. PLoS One 7: e43921. doi: 10.1371/journal.pone.0043921
[4]  Drepper T, Huber R, Heck A, Circolone F, Hillmer AK, et al. (2010) Flavin mononucleotide-based fluorescent reporter proteins outperform green fluorescent protein-like proteins as quantitative in vivo real-time reporters. Appl Environ Microbiol 76: 5990–5994. doi: 10.1128/aem.00701-10
[5]  Tielker D, Eichhof I, Jaeger KE, Ernst JF (2009) Flavin mononucleotide-based fluorescent protein as an oxygen-independent reporter in Candida albicans and Saccharomyces cerevisiae. Eukaryot Cell 8: 913–915. doi: 10.1128/ec.00394-08
[6]  Metz S, Haberzettl K, Fruhwirth S, Teich K, Hasewinkel C, et al. (2012) Interaction of two photoreceptors in the regulation of bacterial photosynthesis genes. Nucleic Acids Res 40: 5901–5909. doi: 10.1093/nar/gks243
[7]  Drepper T, Eggert T, Circolone F, Heck A, Krauss U, et al. (2007) Reporter proteins for in vivo fluorescence without oxygen. Nat Biotechnol 25: 443–445. doi: 10.1038/nbt1293
[8]  Moglich A, Moffat K (2007) Structural basis for light-dependent signaling in the dimeric LOV domain of the photosensor YtvA. J Mol Biol 373: 112–126. doi: 10.1016/j.jmb.2007.07.039
[9]  Marks DS, Hopf TA, Sander C (2012) Protein structure prediction from sequence variation. Nat Biotechnol 30: 1072–1080. doi: 10.1038/nbt.2419
[10]  Whitehead TA, Chevalier A, Song Y, Dreyfus C, Fleishman SJ, et al. (2012) Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing. Nat Biotechnol 30: 543–548. doi: 10.1038/nbt.2214
[11]  Fowler DM, Araya CL, Fleishman SJ, Kellogg EH, Stephany JJ, et al. (2010) High-resolution mapping of protein sequence-function relationships. Nat Methods 7: 741–746. doi: 10.1038/nmeth.1492
[12]  Ernst A, Gfeller D, Kan Z, Seshagiri S, Kim PM, et al. (2010) Coevolution of PDZ domain-ligand interactions analyzed by high-throughput phage display and deep sequencing. Mol Biosyst 6: 1782–1790. doi: 10.1039/c0mb00061b
[13]  McLaughlin RN Jr, Poelwijk FJ, Raman A, Gosal WS, Ranganathan R (2012) The spatial architecture of protein function and adaptation. Nature 491: 138–142. doi: 10.1038/nature11500
[14]  Traxlmayr MW, Hasenhindl C, Hackl M, Stadlmayr G, Rybka JD, et al. (2012) Construction of a stability landscape of the CH3 domain of human IgG1 by combining directed evolution with high throughput sequencing. J Mol Biol 423: 397–412. doi: 10.1016/j.jmb.2012.07.017
[15]  Wu NC, Young AP, Dandekar S, Wijersuriya H, Al-Mawsawi LQ, et al. (2013) Systematic identification of H274Y compensatory mutations in influenza A virus neuraminidase by high-throughput screening. J Virol 87: 1193–1199. doi: 10.1128/jvi.01658-12
[16]  Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079. doi: 10.1093/bioinformatics/btp352
[17]  Mukherjee A, Weyant KB, Walker J, Schroeder CM (2012) Directed evolution of bright mutants of an oxygen-independent flavin-binding fluorescent protein from Pseudomonas putida. J Biol Eng 6: 20. doi: 10.1186/1754-1611-6-20
[18]  Song X, Wang Y, Shu Z, Hong J, Li T, et al. (2013) Engineering a more thermostable blue light photo receptor Bacillus subtilis YtvA LOV domain by a computer aided rational design method. PLoS Comput Biol 9: e1003129. doi: 10.1371/journal.pcbi.1003129
[19]  Shafikhani S, Siegel RA, Ferrari E, Schellenberger V (1997) Generation of large libraries of random mutants in Bacillus subtilis by PCR-based plasmid multimerization. Biotechniques 23: 304–310.
[20]  Quail MA, Smith M, Coupland P, Otto TD, Harris SR, et al. (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13: 341. doi: 10.1186/1471-2164-13-341
[21]  Golovin A, Dimitropoulos D, Oldfield T, Rachedi A, Henrick K (2005) MSDsite: a database search and retrieval system for the analysis and viewing of bound ligands and active sites. Proteins 58: 190–199. doi: 10.1002/prot.20288
[22]  Taylor BL, Zhulin IB, Johnson MS (1999) Aerotaxis and other energy-sensing behavior in bacteria. Annu Rev Microbiol 53: 103–128.
[23]  Urfer R, Kirschner K (1992) The importance of surface loops for stabilizing an eightfold beta alpha barrel protein. Protein Sci 1: 31–45. doi: 10.1002/pro.5560010105
[24]  Hodel A, Kautz RA, Fox RO (1995) Stabilization of a strained protein loop conformation through protein engineering. Protein Sci 4: 484–495. doi: 10.1002/pro.5560040315
[25]  Lengauer T, Rarey M (1996) Computational methods for biomolecular docking. Curr Opin Struct Biol 6: 402–406. doi: 10.1016/s0959-440x(96)80061-3
[26]  Christie JM, Salomon M, Nozue K, Wada M, Briggs WR (1999) LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide. Proc Natl Acad Sci U S A 96: 8779–8783. doi: 10.1073/pnas.96.15.8779
[27]  Losi A, Ghiraldelli E, Jansen S, Gartner W (2005) Mutational effects on protein structural changes and interdomain interactions in the blue-light sensing LOV protein YtvA. Photochem Photobiol 81: 1145–1152. doi: 10.1562/2005-05-25-ra-541
[28]  Hao N, Whitelaw ML, Shearwin KE, Dodd IB, Chapman-Smith A (2011) Identification of residues in the N-terminal PAS domains important for dimerization of Arnt and AhR. Nucleic Acids Res 39: 3695–3709. doi: 10.1093/nar/gkq1336
[29]  Jones MA, Feeney KA, Kelly SM, Christie JM (2007) Mutational analysis of phototropin 1 provides insights into the mechanism underlying LOV2 signal transmission. J Biol Chem 282: 6405–6414. doi: 10.1074/jbc.m605969200
[30]  Polstein LR, Gersbach CA (2012) Light-inducible spatiotemporal control of gene activation by customizable zinc finger transcription factors. J Am Chem Soc 134: 16480–16483. doi: 10.1021/ja3065667

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133