全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

In Vitro Infection of Human Nervous Cells by Two Strains of Toxoplasma gondii: A Kinetic Analysis of Immune Mediators and Parasite Multiplication

DOI: 10.1371/journal.pone.0098491

Full-Text   Cite this paper   Add to My Lib

Abstract:

The severity of toxoplasmic infection depends mainly on the immune status of the host, but also on the Toxoplasma gondii strains, which differ by their virulence profile. The relationship between the human host and T. gondii has not yet been elucidated because few studies have been conducted on human models. The immune mechanisms involved in the persistence of T. gondii in the brains of immunocompetent subjects and during the reactivation of latent infections are still unclear. In this study, we analyzed the kinetics of immune mediators in human nervous cells in vitro, infected with two strains of T. gondii. Human neuroblast cell line (SH SY5Y), microglial (CMH5) and endothelial cells (Hbmec) were infected separately by RH (type I) or PRU (type II) strains for 8 h, 14 h, 24 h and 48 h (ratio 1 cell: 2 tachyzoites). Pro-inflammatory protein expression was different between the two strains and among different human nervous cells. The cytokines IL-6, IL-8 and the chemokines MCP-1 and GROα, and SERPIN E1 were significantly increased in CMH5 and SH SY5Y at 24 h pi. At this point of infection, the parasite burden declined in microglial cells and neurons, but remained high in endothelial cells. This differential effect on the early parasite multiplication may be correlated with a higher production of immune mediators by neurons and microglial cells compared to endothelial cells. Regarding strain differences, PRU strain, but not RH strain, stimulates all cells to produce pro-inflammatory growth factors, G-CSF and GM-CSF. These proteins could increase the inflammatory effect of this type II strain. These results suggest that the different protein expression profiles depend on the parasitic strain and on the human nervous cell type, and that this could be at the origin of diverse brain lesions caused by T. gondii.

References

[1]  Skariah S, McIntyre MK, Mordue DG (2010) Toxoplasma gondii: determinants of tachyzoite to bradyzoite conversion. Parasitol Res 107: 253–260. doi: 10.1007/s00436-010-1899-6
[2]  Su C, Khan A, Zhou P, Majumdar D, Ajzenberg D, et al. (2012) Globally diverse Toxoplasma gondii isolates comprise six major clades originating from a small number of distinct ancestral lineages. Proc Natl Acad Sci U S A 109: 5844–5849. doi: 10.1073/pnas.1203190109
[3]  Mercier A, Devillard S, Ngoubangoye B, Bonnabau H, Banuls AL, et al. (2010) Additional haplogroups of Toxoplasma gondii out of Africa: population structure and mouse-virulence of strains from Gabon. PLoS Negl Trop Dis 4: e876. doi: 10.1371/journal.pntd.0000876
[4]  Ajzenberg D, Banuls AL, Tibayrenc M, Darde ML (2002) Microsatellite analysis of Toxoplasma gondii shows considerable polymorphism structured into two main clonal groups. Int J Parasitol 32: 27–38. doi: 10.1016/s0020-7519(01)00301-0
[5]  Ajzenberg D, Banuls AL, Su C, Dumetre A, Demar M, et al. (2004) Genetic diversity, clonality and sexuality in Toxoplasma gondii. Int J Parasitol 34: 1185–1196. doi: 10.1016/j.ijpara.2004.06.007
[6]  Mercier A, Ajzenberg D, Devillard S, Demar MP, de Thoisy B, et al. (2011) Human impact on genetic diversity of Toxoplasma gondii: example of the anthropized environment from French Guiana. Infect Genet Evol 11: 1378–1387. doi: 10.1016/j.meegid.2011.05.003
[7]  Lambert H, Vutova PP, Adams WC, Lore K, Barragan A (2009) The Toxoplasma gondii-shuttling function of dendritic cells is linked to the parasite genotype. Infect Immun 77: 1679–1688. doi: 10.1128/iai.01289-08
[8]  Petersen E, Kijlstra A, Stanford M (2012) Epidemiology of ocular toxoplasmosis. Ocul Immunol Inflamm 20: 68–75. doi: 10.3109/09273948.2012.661115
[9]  Ajzenberg D, Yera H, Marty P, Paris L, Dalle F, et al. (2009) Genotype of 88 Toxoplasma gondii isolates associated with toxoplasmosis in immunocompromised patients and correlation with clinical findings. J Infect Dis 199: 1155–1167. doi: 10.1086/597477
[10]  Denkers EY, Butcher BA, Del Rio L, Bennouna S (2004) Neutrophils, dendritic cells and Toxoplasma. Int J Parasitol 34: 411–421. doi: 10.1016/j.ijpara.2003.11.001
[11]  Dunay IR, Damatta RA, Fux B, Presti R, Greco S, et al. (2008) Gr1(+) inflammatory monocytes are required for mucosal resistance to the pathogen Toxoplasma gondii. Immunity 29: 306–317. doi: 10.1016/j.immuni.2008.05.019
[12]  Del Rio L, Bennouna S, Salinas J, Denkers EY (2001) CXCR2 deficiency confers impaired neutrophil recruitment and increased susceptibility during Toxoplasma gondii infection. J Immunol 167: 6503–6509. doi: 10.4049/jimmunol.167.11.6503
[13]  Lieberman LA, Hunter CA (2002) The role of cytokines and their signaling pathways in the regulation of immunity to Toxoplasma gondii. Int Rev Immunol 21: 373–403. doi: 10.1080/08830180213281
[14]  Fischer HG, Nitzgen B, Reichmann G, Hadding U (1997) Cytokine responses induced by Toxoplasma gondii in astrocytes and microglial cells. Eur J Immunol 27: 1539–1548. doi: 10.1002/eji.1830270633
[15]  Denney CF, Eckmann L, Reed SL (1999) Chemokine secretion of human cells in response to Toxoplasma gondii infection. Infect Immun 67: 1547–1552.
[16]  Schluter D, Deckert M, Hof H, Frei K (2001) Toxoplasma gondii infection of neurons induces neuronal cytokine and chemokine production, but gamma interferon- and tumor necrosis factor-stimulated neurons fail to inhibit the invasion and growth of T. gondii. Infect Immun 69: 7889–7893. doi: 10.1128/iai.69.12.7889-7893.2001
[17]  Clahsen T, Schaper F (2008) Interleukin-6 acts in the fashion of a classical chemokine on monocytic cells by inducing integrin activation, cell adhesion, actin polymerization, chemotaxis, and transmigration. J Leukoc Biol 84: 1521–1529. doi: 10.1189/jlb.0308178
[18]  Aviles H, Stiles J, O'Donnell P, Orshal J, Leid J, et al. (2008) Kinetics of systemic cytokine and brain chemokine gene expression in murine Toxoplasma infection. J Parasitol 94: 1282–1288. doi: 10.1645/ge-1309.1
[19]  Barragan A, Brossier F, Sibley LD (2005) Transepithelial migration of Toxoplasma gondii involves an interaction of intercellular adhesion molecule 1 (ICAM-1) with the parasite adhesin MIC2. Cell Microbiol 7: 561–568. doi: 10.1111/j.1462-5822.2005.00486.x
[20]  Robben PM, LaRegina M, Kuziel WA, Sibley LD (2005) Recruitment of Gr-1+ monocytes is essential for control of acute toxoplasmosis. J Exp Med 201: 1761–1769. doi: 10.1084/jem.20050054
[21]  Lachenmaier SM, Deli MA, Meissner M, Liesenfeld O (2011) Intracellular transport of Toxoplasma gondii through the blood-brain barrier. J Neuroimmunol 232: 119–130. doi: 10.1016/j.jneuroim.2010.10.029
[22]  Rahman A, Fazal F (2009) Hug tightly and say goodbye: role of endothelial ICAM-1 in leukocyte transmigration. Antioxid Redox Signal 11: 823–839. doi: 10.1089/ars.2008.2204
[23]  Venturi GM, Tu L, Kadono T, Khan AI, Fujimoto Y, et al. (2003) Leukocyte migration is regulated by L-selectin endoproteolytic release. Immunity 19: 713–724. doi: 10.1016/s1074-7613(03)00295-4
[24]  Freund YR, Zaveri NT, Javitz HS (2001) In vitro investigation of host resistance to Toxoplasma gondii infection in microglia of BALB/c and CBA/Ca mice. Infect Immun 69: 765–772. doi: 10.1128/iai.69.2.765-772.2001
[25]  Halonen SK, Weiss LM, Chiu FC (1998) Association of host cell intermediate filaments with Toxoplasma gondii cysts in murine astrocytes in vitro. Int J Parasitol 28: 815–823. doi: 10.1016/s0020-7519(98)00035-6
[26]  Halonen SK, Lyman WD, Chiu FC (1996) Growth and development of Toxoplasma gondii in human neurons and astrocytes. J Neuropathol Exp Neurol 55: 1150–1156. doi: 10.1097/00005072-199611000-00006
[27]  Luder CG, Giraldo-Velasquez M, Sendtner M, Gross U (1999) Toxoplasma gondii in primary rat CNS cells: differential contribution of neurons, astrocytes, and microglial cells for the intracerebral development and stage differentiation. Exp Parasitol 93: 23–32. doi: 10.1006/expr.1999.4421
[28]  Fagard R, Van Tan H, Creuzet C, Pelloux H (1999) Differential development of Toxoplasma gondii in neural cells. Parasitol Today 15: 504–507. doi: 10.1016/s0169-4758(99)01568-9
[29]  Hulinska D, Sykora J, Zastera M (1990) Effect of cortisone on Toxoplasma gondii infection studied by electron microscopy. Folia Parasitol (Praha) 37: 207–212.
[30]  Haroon F, Handel U, Angenstein F, Goldschmidt J, Kreutzmann P, et al. (2012) Toxoplasma gondii actively inhibits neuronal function in chronically infected mice. PLoS One 7: e35516. doi: 10.1371/journal.pone.0035516
[31]  Yarovinsky F (2014) Innate immunity to Toxoplasma gondii infection. Nat Rev Immunol 14: 109–121. doi: 10.1038/nri3598
[32]  Jebbari H, Roberts CW, Ferguson DJ, Bluethmann H, Alexander J (1998) A protective role for IL-6 during early infection with Toxoplasma gondii. Parasite Immunol 20: 231–239. doi: 10.1046/j.1365-3024.1998.00152.x
[33]  Suzuki Y, Rani S, Liesenfeld O, Kojima T, Lim S, et al. (1997) Impaired resistance to the development of toxoplasmic encephalitis in interleukin-6-deficient mice. Infect Immun 65: 2339–2345.
[34]  Herrmann DC, Barwald A, Maksimov A, Pantchev N, Vrhovec MG, et al. (2012) Toxoplasma gondii sexual cross in a single naturally infected feline host: generation of highly mouse-virulent and avirulent clones, genotypically different from clonal types I, II and III. Vet Res 43: 39. doi: 10.1186/1297-9716-43-39
[35]  Blewett DA, Miller JK, Harding J (1983) Simple technique for the direct isolation of toxoplasma tissue cysts from fetal ovine brain. Vet Rec 112: 98–100. doi: 10.1136/vr.112.5.98
[36]  Janabi N, Peudenier S, Heron B, Ng KH, Tardieu M (1995) Establishment of human microglial cell lines after transfection of primary cultures of embryonic microglial cells with the SV40 large T antigen. Neurosci Lett 195: 105–108. doi: 10.1016/0304-3940(94)11792-h
[37]  de Gannes FM, Merle M, Canioni P, Voisin PJ (1998) Metabolic and cellular characterization of immortalized human microglial cells under heat stress. Neurochem Int 33: 61–73. doi: 10.1016/s0197-0186(05)80010-5
[38]  Schweitzer CM, van der Schoot CE, Drager AM, van der Valk P, Zevenbergen A, et al. (1995) Isolation and culture of human bone marrow endothelial cells. Exp Hematol 23: 41–48.
[39]  Schweitzer KM, Vicart P, Delouis C, Paulin D, Drager AM, et al. (1997) Characterization of a newly established human bone marrow endothelial cell line: distinct adhesive properties for hematopoietic progenitors compared with human umbilical vein endothelial cells. Lab Invest 76: 25–36.
[40]  Liu ZY, Ganju RK, Wang JF, Schweitzer K, Weksler B, et al. (1997) Characterization of signal transduction pathways in human bone marrow endothelial cells. Blood 90: 2253–2259.
[41]  Ross RA, Spengler BA, Biedler JL (1983) Coordinate morphological and biochemical interconversion of human neuroblastoma cells. J Natl Cancer Inst 71: 741–747.
[42]  Agholme L, Nath S, Domert J, Marcusson J, Kagedal K, et al. (2013) Proteasome inhibition induces stress kinase dependent transport deficits - Implications for Alzheimer's disease. Mol Cell Neurosci.
[43]  Edvinsson B, Lappalainen M, Evengard B, Toxoplasmosis ESGf (2006) Real-time PCR targeting a 529-bp repeat element for diagnosis of toxoplasmosis. Clin Microbiol Infect 12: 131–136. doi: 10.1111/j.1469-0691.2005.01332.x
[44]  Cassaing S, Bessieres MH, Berry A, Berrebi A, Fabre R, et al. (2006) Comparison between two amplification sets for molecular diagnosis of toxoplasmosis by real-time PCR. J Clin Microbiol 44: 720–724. doi: 10.1128/jcm.44.3.720-724.2006
[45]  Bohne W, Gross U, Ferguson DJ, Heesemann J (1995) Cloning and characterization of a bradyzoite-specifically expressed gene (hsp30/bag1) of Toxoplasma gondii, related to genes encoding small heat-shock proteins of plants. Mol Microbiol 16: 1221–1230. doi: 10.1111/j.1365-2958.1995.tb02344.x
[46]  Roos DS, Donald RG, Morrissette NS, Moulton AL (1994) Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. Methods Cell Biol 45: 27–63. doi: 10.1016/s0091-679x(08)61845-2
[47]  Xiao J, Jones-Brando L, Talbot CC Jr, Yolken RH (2011) Differential effects of three canonical Toxoplasma strains on gene expression in human neuroepithelial cells. Infect Immun 79: 1363–1373. doi: 10.1128/iai.00947-10
[48]  Brenier-Pinchart MP, Vigan I, Jouvin-Marche E, Marche PN, Pelet E, et al. (2002) Monocyte chemotactic protein-1 secretion and expression after Toxoplasma gondii infection in vitro depend on the stage of the parasite. FEMS Microbiol Lett 214: 45–49. doi: 10.1111/j.1574-6968.2002.tb11323.x
[49]  Brenier-Pinchart MP, Blanc-Gonnet E, Marche PN, Berger F, Durand F, et al. (2004) Infection of human astrocytes and glioblastoma cells with Toxoplasma gondii: monocyte chemotactic protein-1 secretion and chemokine expression in vitro. Acta Neuropathol 107: 245–249. doi: 10.1007/s00401-003-0804-0
[50]  Kikumura A, Ishikawa T, Norose K (2012) Kinetic analysis of cytokines, chemokines, chemokine receptors and adhesion molecules in murine ocular toxoplasmosis. Br J Ophthalmol 96: 1259–1267. doi: 10.1136/bjophthalmol-2012-301490
[51]  Goncalves RM, Rodrigues DH, Camargos da Costa AM, Teixeira MM, Ribeiro Campos W, et al. (2007) Increased serum levels of CXCL8 chemokine in acute toxoplasmic retinochoroiditis. Acta Ophthalmol Scand 85: 871–876. doi: 10.1111/j.1600-0420.2007.00943.x
[52]  Knight BC, Kissane S, Falciani F, Salmon M, Stanford MR, et al. (2006) Expression analysis of immune response genes of Muller cells infected with Toxoplasma gondii. J Neuroimmunol 179: 126–131. doi: 10.1016/j.jneuroim.2006.06.002
[53]  Flores M, Saavedra R, Bautista R, Viedma R, Tenorio EP, et al. (2008) Macrophage migration inhibitory factor (MIF) is critical for the host resistance against Toxoplasma gondii. FASEB J 22: 3661–3671. doi: 10.1096/fj.08-111666
[54]  Erbe DV, Pfefferkorn ER, Fanger MW (1991) Functions of the various IgG Fc receptors in mediating killing of Toxoplasma gondii. J Immunol 146: 3145–3151.
[55]  Channon JY, Miselis KA, Minns LA, Dutta C, Kasper LH (2002) Toxoplasma gondii induces granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor secretion by human fibroblasts: implications for neutrophil apoptosis. Infect Immun 70: 6048–6057. doi: 10.1128/iai.70.11.6048-6057.2002
[56]  Brach MA, deVos S, Gruss HJ, Herrmann F (1992) Prolongation of survival of human polymorphonuclear neutrophils by granulocyte-macrophage colony-stimulating factor is caused by inhibition of programmed cell death. Blood 80: 2920–2924.
[57]  Nagineni CN, Detrick B, Hooks JJ (2000) Toxoplasma gondii infection induces gene expression and secretion of interleukin 1 (IL-1), IL-6, granulocyte-macrophage colony-stimulating factor, and intercellular adhesion molecule 1 by human retinal pigment epithelial cells. Infect Immun 68: 407–410. doi: 10.1128/iai.68.1.407-410.2000
[58]  Coleman DL, Chodakewitz JA, Bartiss AH, Mellors JW (1988) Granulocyte-macrophage colony-stimulating factor enhances selective effector functions of tissue-derived macrophages. Blood 72: 573–578.
[59]  Ponomarev ED, Shriver LP, Maresz K, Pedras-Vasconcelos J, Verthelyi D, et al. (2007) GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis. J Immunol 178: 39–48. doi: 10.4049/jimmunol.178.1.39
[60]  Schuindt SH, Oliveira BC, Pimentel PM, Resende TL, Retamal CA, et al. (2012) Secretion of multi-protein migratory complex induced by Toxoplasma gondii infection in macrophages involves the uPA/uPAR activation system. Vet Parasitol 186: 207–215. doi: 10.1016/j.vetpar.2011.11.035

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133