The cytoskeletons of Toxoplasma gondii and related apicomplexan parasites are highly polarized, with apical and basal regions comprised of distinct protein complexes. Components of these complexes are known to play important roles in parasite shape, cell division, and host cell invasion. During an effort to discover the biologically relevant target of a small-molecule inhibitor of T. gondii invasion (Conoidin A), we discovered a novel cytoskeletal protein that we named TgCBAP (Conserved Basal Apical Peripheral protein). Orthologs of TgCBAP are only found in the genomes of other apicomplexans; they contain no identifiable domains or motifs and their function(s) is unknown. As a first step toward elucidating the function of this highly conserved family of proteins, we disrupted the TgCBAP gene by double homologous recombination. Parasites lacking TgCBAP are as sensitive to the effects of Conoidin A as wild-type parasites, demonstrating that TgCBAP is not the biologically relevant target of Conoidin A. However, ΔTgCBAP parasites are significantly shorter than wild-type parasites and have a growth defect in culture. Furthermore, TgCBAP has an unusual subcellular localization, forming small rings at the apical and basal ends of the parasite and localizing to punctate, ring-like structures around the parasite periphery. These data identify a new marker of the apical and basal subcompartments of T. gondii, reveal a potentially novel compartment along the parasite periphery, and identify TgCBAP as a determinant of parasite size that is required for a maximally efficient lytic cycle.
References
[1]
Boothroyd J, Kim K, Sibley D, Soldati D (1995) Toxoplasma as a Paradigm for the Use of Genetics in the Study of Protozoan Parasites. In: Wiley-Liss, editor. Molecular Approaches to Parasitology. pp. 211–225.
[2]
Kim K, Weiss LM (2004) Toxoplasma gondii: the model apicomplexan. Int J Parasitol 34: 423–432. doi: 10.1016/j.ijpara.2003.12.009
[3]
Mital J, Ward GE (2007) Current and Emerging Approaches to Studying Invasion in Apicomplexan Parasites. In: Soldati D, Burleigh B, editors. Molecular Mechanisms of Parasite Invasion: Landes Bioscience.
[4]
Roos DS, Donald RG, Morrissette NS, Moulton AL (1994) Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. Methods in Cell Biology. pp. 27–63.
[5]
Soldati D (1996) Molecular genetic strategies in Toxoplasma gondii: close in on a successful invader. FEBS Letters 389: 80–83. doi: 10.1016/0014-5793(96)00572-8
[6]
Meissner M, Breinich MS, Gilson PR, Crabb BS (2007) Molecular genetic tools in Toxoplasma and Plasmodium: achievements and future needs. Curr Opin Microbiol 10: 349–356. doi: 10.1016/j.mib.2007.07.006
[7]
Morrissette NS, Sibley LD (2002) Cytoskeleton of apicomplexan parasites. Microbiol Mol Biol Rev 66: : 21–38; table of contents.
[8]
Vivier E, Petitprez A (1969) The outer membrane complex and its development at the time of the formation of daughter cells in Toxoplasma gondii. J Cell Biol 43: 329–342.
[9]
Porchet E, Torpier G (1977) [Freeze fracture study of Toxoplasma and Sarcocystis infective stages (author's transl)]. Z Parasitenkd 54: 101–124.
[10]
Mann T, Beckers C (2001) Characterization of the subpellicular network, a filamentous membrane skeletal component in the parasite Toxoplasma gondii. Mol Biochem Parasitol 115: 257–268. doi: 10.1016/s0166-6851(01)00289-4
[11]
Gubbels MJ, Wieffer M, Striepen B (2004) Fluorescent protein tagging in Toxoplasma gondii: identification of a novel inner membrane complex component conserved among Apicomplexa. Mol Biochem Parasitol 137: 99–110. doi: 10.1016/j.molbiopara.2004.05.007
[12]
Anderson-White BR, Ivey FD, Cheng K, Szatanek T, Lorestani A, et al. (2010) A family of intermediate filament-like proteins is sequentially assembled into the cytoskeleton of Toxoplasma gondii. Cell Microbiol 13: 18–31. doi: 10.1111/j.1462-5822.2010.01514.x
[13]
Tremp AZ, Khater EI, Dessens JT (2008) IMC1b is a putative membrane skeleton protein involved in cell shape, mechanical strength, motility, and infectivity of malaria ookinetes. J Biol Chem 283: 27604–27611. doi: 10.1074/jbc.m801302200
[14]
Nichols BA, Chiappino ML (1987) Cytoskeleton of Toxoplasma gondii. J Protozool 34: 217–226. doi: 10.1111/j.1550-7408.1987.tb03162.x
[15]
Hu K, Roos DS, Murray JM (2002) A novel polymer of tubulin forms the conoid of Toxoplasma gondii. J Cell Biol 156: 1039–1050. doi: 10.1083/jcb.200112086
[16]
Carey KL, Westwood NJ, Mitchison TJ, Ward GE (2004) A small-molecule approach to studying invasive mechanisms of Toxoplasma gondii. Proc Natl Acad Sci U S A 101: 7433–7438. doi: 10.1073/pnas.0307769101
[17]
Haraldsen JD, Liu G, Botting CH, Walton JAG, Storm J, et al. (2009) Identification of conoidin A as a covalent inhibitor of peroxiredoxin II. Org Biomo Chem 7: 3040–3048. doi: 10.1039/b901735f
[18]
Huynh MH, Carruthers VB (2009) Tagging of endogenous genes in a Toxoplasma gondii strain lacking Ku80. Eukaryot Cell 8: 530–539. doi: 10.1128/ec.00358-08
[19]
Fernandez-Suarez M, Chen TS, Ting AY (2008) Protein-protein interaction detection in vitro and in cells by proximity biotinylation. J Am Chem Soc 130: 9251–9253. doi: 10.1021/ja801445p
[20]
Beckers CJ, Dubremetz JF, Mercereau-Puijalon O, Joiner KA (1994) The Toxoplasma gondii rhoptry protein ROP 2 is inserted into the parasitophorous vacuole membrane, surrounding the intracellular parasite, and is exposed to the host cell cytoplasm. J Cell Biol 127: 947–961. doi: 10.1083/jcb.127.4.947
[21]
Messina M, Niesman I, Mercier C, Sibley LD (1995) Stable DNA transformation of Toxoplasma gondii using phleomycin selection. Gene 165: 213–217. doi: 10.1016/0378-1119(95)00548-k
[22]
Fox BA, Ristuccia JG, Gigley JP, Bzik DJ (2009) Efficient gene replacements in Toxoplasma gondii strains deficient for nonhomologous end joining. Eukaryot Cell 8: 520–529. doi: 10.1128/ec.00357-08
[23]
Gubbels MJ, Vaishnava S, Boot N, Dubremetz JF, Striepen B (2006) A MORN-repeat protein is a dynamic component of the Toxoplasma gondii cell division apparatus. J Cell Sci 119: 2236–2245. doi: 10.1242/jcs.02949
[24]
Beck JR, Rodriguez-Fernandez IA, Cruz de Leon J, Huynh MH, Carruthers VB, et al. (2010) A novel family of Toxoplasma IMC proteins displays a hierarchical organization and functions in coordinating parasite division. PLoS Pathog 6.
[25]
Mondragon R, Frixione E (1996) Ca(2+)-dependence of conoid extrusion in Toxoplasma gondii tachyzoites. J Eukaryot Microbiol 43: 120–127. doi: 10.1111/j.1550-7408.1996.tb04491.x
[26]
Hu K, Johnson J, Florens L, Fraunholz M, Suravajjala S, et al. (2006) Cytoskeletal Components of an Invasion Machine-The Apical Complex of Toxoplasma gondii. PLoS Pathog 2: e13. doi: 10.1371/journal.ppat.0020013
[27]
Dobrowolski JM, Niesman IR, Sibley LD (1997) Actin in the parasite Toxoplasma gondii is encoded by a single copy gene, ACT1 and exists primarily in a globular form. Cell Motil Cytoskeleton 37: 253–262. doi: 10.1002/(sici)1097-0169(1997)37:3<253::aid-cm7>3.0.co;2-7
[28]
Heaslip AT, Dzierszinski F, Stein B, Hu K (2010) TgMORN1 is a key organizer for the basal complex of Toxoplasma gondii. PLoS Pathog 6: e1000754. doi: 10.1371/journal.ppat.1000754
[29]
Lorestani A, Sheiner L, Yang K, Robertson SD, Sahoo N, et al. (2010) A Toxoplasma MORN1 null mutant undergoes repeated divisions but is defective in basal assembly, apicoplast division and cytokinesis. PLoS One 5: e12302. doi: 10.1371/journal.pone.0012302
[30]
Lorestani A, Ivey FD, Thirugnanam S, Busby MA, Marth GT, et al. (2012) Targeted proteomic dissection of Toxoplasma cytoskeleton sub-compartments using MORN1. Cytoskeleton (Hoboken) 69: 1069–1085. doi: 10.1002/cm.21077
[31]
Barkhuff WD, Gilk SD, Whitmarsh R, Tilley LD, Hunter C, et al. (2011) Targeted disruption of TgPhIL1 in Toxoplasma gondii results in altered parasite morphology and fitness. PLoS One 6: e23977. doi: 10.1371/journal.pone.0023977