全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Vitamin D Prevents Endothelial Progenitor Cell Dysfunction Induced by Sera from Women with Preeclampsia or Conditioned Media from Hypoxic Placenta

DOI: 10.1371/journal.pone.0098527

Full-Text   Cite this paper   Add to My Lib

Abstract:

Context Placenta-derived circulating factors contribute to the maternal endothelial dysfunction underlying preeclampsia. Endothelial colony forming cells (ECFC), a sub-population of endothelial progenitor cells (EPCs), are thought to be involved in vasculogenesis and endothelial repair. Low vitamin D concentrations are associated with an increased risk for preeclampsia. Objective We hypothesized that the function of human fetal ECFCs in culture would be suppressed by exposure to preeclampsia-related factors–preeclampsia serum or hypoxic placental conditioned medium– in a fashion reversed by vitamin D. Design, Setting, Patients ECFCs were isolated from cord blood of uncomplicated pregnancies and expanded in culture. Uncomplicated pregnancy villous placenta in explant culture were exposed to either 2% (hypoxic), 8% (normoxic) or 21% (hyperoxic) O2 for 48 h, after which the conditioned media (CM) was collected. Outcome Measures ECFC tubule formation (Matrigel assay) and migration were examined in the presence of either maternal serum from preeclampsia cases or uncomplicated pregnancy controls, or pooled CM, in the presence or absence of 1,25(OH)2 vitamin D3. Results 1,25(OH)2 vitamin D3 reversed the adverse effects of preeclampsia serum or CM from hypoxic placenta on ECFCs capillary-tube formation and migration. Silencing of VDR expression by VDR siRNA, VDR blockade, or VEGF pathway blockade reduced ECFC functional abilities. Effects of VDR or VEGF blockade were partially prevented by vitamin D. Conclusion Vitamin D promotes the capillary-like tubule formation and migration of ECFCs in culture, minimizing the negative effects of exposure to preeclampsia-related factors. Further evaluation of the role of vitamin D in ECFC regulation and preeclampsia is warranted.

References

[1]  Ilekis JV, Reddy UM, Roberts JM (2007) Preeclampsia–a pressing problem: an executive summary of a National Institute of Child Health and Human Development workshop. Reprod Sci 14: 508–523. doi: 10.1177/1933719107306232
[2]  Wang Y, Gu Y, Zhang Y, Lewis DF (2004) Evidence of endothelial dysfunction in preeclampsia: decreased endothelial nitric oxide synthase expression is associated with increased cell permeability in endothelial cells from preeclampsia. Am J Obstet Gynecol 190: 817–824. doi: 10.1016/j.ajog.2003.09.049
[3]  Roberts JM (2000) Preeclampsia: what we know and what we do not know. Semin Perinatol 24: 24–28. doi: 10.1016/s0146-0005(00)80050-6
[4]  Redman CW, Sargent IL (2005) Latest advances in understanding preeclampsia. Science 308: 1592–1594. doi: 10.1126/science.1111726
[5]  Maynard SE, Min JY, Merchan J, Lim KH, Li J, et al. (2003) Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 111: 649–658. doi: 10.1172/jci200317189
[6]  Dechend R, Homuth V, Wallukat G, Kreuzer J, Park JK, et al. (2000) AT(1) receptor agonistic antibodies from preeclamptic patients cause vascular cells to express tissue factor. Circulation 101: 2382–2387. doi: 10.1161/01.cir.101.20.2382
[7]  Cockell AP, Learmont JG, Smarason AK, Redman CW, Sargent IL, et al. (1997) Human placental syncytiotrophoblast microvillous membranes impair maternal vascular endothelial function. Br J Obstet Gynaecol 104: 235–240. doi: 10.1111/j.1471-0528.1997.tb11052.x
[8]  Asahara T, Isner JM (2002) Endothelial progenitor cells for vascular regeneration. J Hematother Stem Cell Res 11: 171–178. doi: 10.1089/152581602753658385
[9]  Luppi P, Powers RW, Verma V, Edmunds L, Plymire D, et al. (2010) Maternal circulating CD34+VEGFR-2+ and CD133+VEGFR-2+ progenitor cells increase during normal pregnancy but are reduced in women with preeclampsia. Reprod Sci 17: 643–652. doi: 10.1177/1933719110366164
[10]  Lin C, Rajakumar A, Plymire DA, Verma V, Markovic N, et al. (2009) Maternal endothelial progenitor colony-forming units with macrophage characteristics are reduced in preeclampsia. Am J Hypertens 22: 1014–1019.
[11]  Sieveking DP, Buckle A, Celermajer DS, Ng MK (2008) Strikingly different angiogenic properties of endothelial progenitor cell subpopulations: insights from a novel human angiogenesis assay. J Am Coll Cardiol 51: 660–668. doi: 10.1016/j.hlc.2008.05.046
[12]  Sipos PI, Crocker IP, Hubel CA, Baker PN (2009) Endothelial Progenitor Cells: Their Potential in the Placental Vasculature and Related Complications. Placenta.
[13]  Sipos PI, Rens W, Schlecht H, Fan X, Wareing M, et al. (2013) Uterine vasculature remodeling in human pregnancy involves functional macrochimerism by endothelial colony forming cells of fetal origin. Stem Cells 31: 1363–1370. doi: 10.1002/stem.1385
[14]  Tabesh M, Salehi-Abargouei A, Esmaillzadeh A (2013) Maternal vitamin D status and risk of pre-eclampsia: a systematic review and meta-analysis. J Clin Endocrinol Metab 98: 3165–3173. doi: 10.1210/jc.2013-1257
[15]  Bodnar LM, Catov JM, Simhan HN, Holick MF, Powers RW, et al. (2007) Maternal vitamin D deficiency increases the risk of preeclampsia. J Clin Endocrinol Metab 92: 3517–3522. doi: 10.1210/jc.2007-0718
[16]  Robinson CJ, Wagner CL, Hollis BW, Baatz JE, Johnson DD (2011) Maternal vitamin D and fetal growth in early-onset severe preeclampsia. Am J Obstet Gynecol 204: 556 e551–554.
[17]  Haugen M, Brantsaeter AL, Trogstad L, Alexander J, Roth C, et al. (2009) Vitamin D supplementation and reduced risk of preeclampsia in nulliparous women. Epidemiology 20: 720–726. doi: 10.1097/ede.0b013e3181a70f08
[18]  Hypponen E, Hartikainen AL, Sovio U, Jarvelin MR, Pouta A (2007) Does vitamin D supplementation in infancy reduce the risk of pre-eclampsia? Eur J Clin Nutr 61: 1136–1139. doi: 10.1038/sj.ejcn.1602625
[19]  Grundmann M, Haidar M, Placzko S, Niendorf R, Darashchonak N, et al. (2012) Vitamin D improves the angiogenic properties of endothelial progenitor cells. Am J Physiol Cell Physiol 303: C954–962. doi: 10.1152/ajpcell.00030.2012
[20]  von Versen-Hoynck F, Rajakumar A, Bainbridge SA, Gallaher MJ, Roberts JM, et al. (2009) Human placental adenosine receptor expression is elevated in preeclampsia and hypoxia increases expression of the A2A receptor. Placenta 30: 434–442. doi: 10.1016/j.placenta.2009.02.004
[21]  Diaz L, Noyola-Martinez N, Barrera D, Hernandez G, Avila E, et al. (2009) Calcitriol inhibits TNF-alpha-induced inflammatory cytokines in human trophoblasts. J Reprod Immunol 81: 17–24. doi: 10.1016/j.jri.2009.02.005
[22]  Halhali A, Villa AR, Madrazo E, Soria MC, Mercado E, et al. (2004) Longitudinal changes in maternal serum 1,25-dihydroxyvitamin D and insulin like growth factor I levels in pregnant women who developed preeclampsia: comparison with normotensive pregnant women. J Steroid Biochem Mol Biol 89–90: 553–556. doi: 10.1016/j.jsbmb.2004.03.069
[23]  Bainbridge SA, Roberts JM, von Versen-Hoynck F, Koch J, Edmunds L, et al. (2009) Uric acid attenuates trophoblast invasion and integration into endothelial cell monolayers. Am J Physiol Cell Physiol 297: C440–450. doi: 10.1152/ajpcell.00593.2008
[24]  Cardus A, Panizo S, Encinas M, Dolcet X, Gallego C, et al. (2009) 1,25-dihydroxyvitamin D3 regulates VEGF production through a vitamin D response element in the VEGF promoter. Atherosclerosis 204: 85–89. doi: 10.1016/j.atherosclerosis.2008.08.020
[25]  Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, et al. (2011) The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab 96: 53–58. doi: 10.1016/j.jada.2011.01.004
[26]  Pringle KG, Kind KL, Sferruzzi-Perri AN, Thompson JG, Roberts CT (2010) Beyond oxygen: complex regulation and activity of hypoxia inducible factors in pregnancy. Hum Reprod Update 16: 415–431. doi: 10.1093/humupd/dmp046
[27]  Miller RK, Genbacev O, Turner MA, Aplin JD, Caniggia I, et al. (2005) Human placental explants in culture: approaches and assessments. Placenta 26: 439–448. doi: 10.1016/j.placenta.2004.10.002
[28]  Heazell AE, Lacey HA, Jones CJ, Huppertz B, Baker PN, et al. (2008) Effects of oxygen on cell turnover and expression of regulators of apoptosis in human placental trophoblast. Placenta 29: 175–186. doi: 10.1016/j.placenta.2007.11.002
[29]  Heazell AE, Moll SJ, Jones CJ, Baker PN, Crocker IP (2007) Formation of syncytial knots is increased by hyperoxia, hypoxia and reactive oxygen species. Placenta 28 Suppl A: S33–40.
[30]  Burton GJ (2009) Oxygen, the Janus gas; its effects on human placental development and function. J Anat 215: 27–35. doi: 10.1111/j.1469-7580.2008.00978.x
[31]  Chen CW, Jaffe IZ, Karumanchi SA (2014) Pre-eclampsia and cardiovascular disease. Cardiovasc Res 101: 579–586. doi: 10.1093/cvr/cvu018
[32]  Dunn WB, Brown M, Worton SA, Crocker IP, Broadhurst D, et al. (2009) Changes in the metabolic footprint of placental explant-conditioned culture medium identifies metabolic disturbances related to hypoxia and pre-eclampsia. Placenta 30: 974–980. doi: 10.1016/j.placenta.2009.08.008
[33]  Smarason AK, Sargent IL, Redman CW (1996) Endothelial cell proliferation is suppressed by plasma but not serum from women with preeclampsia. Am J Obstet Gynecol 174: 787–793. doi: 10.1016/s0002-9378(96)70466-0
[34]  Pospechova K, Rozehnal V, Stejskalova L, Vrzal R, Pospisilova N, et al. (2009) Expression and activity of vitamin D receptor in the human placenta and in choriocarcinoma BeWo and JEG-3 cell lines. Mol Cell Endocrinol 299: 178–187. doi: 10.1016/j.mce.2008.12.003
[35]  Merke J, Milde P, Lewicka S, Hugel U, Klaus G, et al. (1989) Identification and regulation of 1,25-dihydroxyvitamin D3 receptor activity and biosynthesis of 1,25-dihydroxyvitamin D3. Studies in cultured bovine aortic endothelial cells and human dermal capillaries. J Clin Invest 83: 1903–1915. doi: 10.1172/jci114097
[36]  Evans KN, Bulmer JN, Kilby MD, Hewison M (2004) Vitamin D and placental-decidual function. J Soc Gynecol Investig 11: 263–271. doi: 10.1016/j.jsgi.2004.02.002
[37]  Evans KN, Nguyen L, Chan J, Innes BA, Bulmer JN, et al. (2006) Effects of 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 on cytokine production by human decidual cells. Biol Reprod 75: 816–822. doi: 10.1095/biolreprod.106.054056
[38]  Barrera D, Noyola-Martinez N, Avila E, Halhali A, Larrea F, et al. (2011) Calcitriol inhibits interleukin-10 expression in cultured human trophoblasts under normal and inflammatory conditions. Cytokine 57: 316–321. doi: 10.1016/j.cyto.2011.11.020
[39]  Cardus A, Parisi E, Gallego C, Aldea M, Fernandez E, et al. (2006) 1,25-Dihydroxyvitamin D3 stimulates vascular smooth muscle cell proliferation through a VEGF-mediated pathway. Kidney Int 69: 1377–1384. doi: 10.1038/sj.ki.5000304
[40]  Davis EF, Lazdam M, Lewandowski AJ, Worton SA, Kelly B, et al. (2012) Cardiovascular risk factors in children and young adults born to preeclamptic pregnancies: a systematic review. Pediatrics 129: e1552–1561. doi: 10.1542/peds.2011-3093
[41]  Tare M, Emmett SJ, Coleman HA, Skordilis C, Eyles DW, et al. (2011) Vitamin D insufficiency is associated with impaired vascular endothelial and smooth muscle function and hypertension in young rats. J Physiol 589: 4777–4786. doi: 10.1113/jphysiol.2011.214726
[42]  Liu NQ, Ouyang Y, Bulut Y, Lagishetty V, Chan SY, et al. (2013) Dietary vitamin D restriction in pregnant female mice is associated with maternal hypertension and altered placental and fetal development. Endocrinology 154: 2270–2280. doi: 10.1210/en.2012-2270
[43]  Ingram DA, Lien IZ, Mead LE, Estes M, Prater DN, et al. (2008) In vitro hyperglycemia or a diabetic intrauterine environment reduces neonatal endothelial colony-forming cell numbers and function. Diabetes 57: 724–731. doi: 10.2337/db07-1507
[44]  Sipos PI, Bourque SL, Hubel CA, Baker PN, Sibley CP, et al. (2013) Endothelial colony-forming cells derived from pregnancies complicated by intrauterine growth restriction are fewer and have reduced vasculogenic capacity. J Clin Endocrinol Metab 98: 4953–4960. doi: 10.1210/jc.2013-2580
[45]  Ahmad S, Ahmed A (2004) Elevated placental soluble vascular endothelial growth factor receptor-1 inhibits angiogenesis in preeclampsia. Circ Res 95: 884–891. doi: 10.1161/01.res.0000147365.86159.f5
[46]  Mantell DJ, Owens PE, Bundred NJ, Mawer EB, Canfield AE (2000) 1 alpha,25-dihydroxyvitamin D(3) inhibits angiogenesis in vitro and in vivo. Circ Res 87: 214–220. doi: 10.1161/01.res.87.3.214
[47]  Chung I, Han G, Seshadri M, Gillard BM, Yu WD, et al. (2009) Role of vitamin D receptor in the antiproliferative effects of calcitriol in tumor-derived endothelial cells and tumor angiogenesis in vivo. Cancer Res 69: 967–975. doi: 10.1158/0008-5472.can-08-2307
[48]  Egorova AD, DeRuiter MC, de Boer HC, van de Pas S, Gittenberger-de Groot AC, et al. (2012) Endothelial colony-forming cells show a mature transcriptional response to shear stress. In Vitro Cell Dev Biol Anim 48: 21–29. doi: 10.1007/s11626-011-9470-z
[49]  Reynolds J, Ray D, O’Neill T, Alexander MY, Bruce I (2014) Role of vitamin D in endothelial repair mechanisms in systemic lupus erythematosus. The Lancet 383: S89. doi: 10.1016/s0140-6736(14)60352-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133