[1] | Dassa E (2011) Natural history of ABC systems: not only transporters. In: Sharom FJ, editor. Essays in Biochemistry: ABC Transporters. 19–42.
|
[2] | Holland IB (2011) ABC transporters, mechanisms and biology: an overview. In: Sharom FJ, editor. Essays in Biochemistry: ABC Transporters. 1–17.
|
[3] | Jin MS, Oldham ML, Zhang QJ, Chen J (2012) Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature 490: 566–569. doi: 10.1038/nature11448
|
[4] | Al-Shawi MK (2011) Catalytic and transport cycles of ABC exporters. In: Sharom FJ, editor. Essays in Biochemistry: ABC Transporters. 63–83.
|
[5] | Dassa E, Bouige P (2001) The ABC of ABCs: a phylogenetic and functional classification of ABC systems in living organisms. Res Microbiol 152: 211–229. doi: 10.1016/s0923-2508(01)01194-9
|
[6] | Dean M, Annilo T (2005) Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annu Rev Genom Hum Genet 6: 123–142. doi: 10.1146/annurev.genom.6.080604.162122
|
[7] | Wang B, Dukarevich M, Sun EI, Yen MR, Saier MH (2009) Membrane porters of ATP-binding cassette transport systems are polyphyletic. J Membr Biol 231: 1–10. doi: 10.1007/s00232-009-9200-6
|
[8] | Annilo T, Chen ZQ, Shulenin S, Costantino J, Thomas L, et al. (2006) Evolution of the vertebrate ABC gene family: analysis of gene birth and death. Genomics 88: 1–11. doi: 10.1016/j.ygeno.2006.03.001
|
[9] | Dean M, Rzhetsky A, Allikmets R (2001) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11: 1156–1166. doi: 10.1101/gr.gr-1649r
|
[10] | Kretzschmar T, Burla B, Lee Y, Martinoia E, Nagy R (2011) Functions of ABC transporters in plants. In: Sharom FJ, editor. Essays in Biochemistry: ABC Transporters. 145–160.
|
[11] | Quazi F, Molday RS (2011) Lipid transport by mammalian ABC proteins. In: Sharom FJ, editor. Essays in Biochemistry: ABC Transporters. 265–290.
|
[12] | Sharom FJ (2011) The P-glycoprotein multidrug transporter. In: Sharom FJ, editor. Essays in Biochemistry: ABC Transporters. 161–178.
|
[13] | Slot AJ, Molinski SV, Cole SPC (2011) Mammalian multidrug-resistance proteins (MRPs). In: Sharom FJ, editor. Essays in Biochemistry: ABC Transporters. 179–207.
|
[14] | Tamaki A, Ierano C, Szakacs G, Robey RW, Bates SE (2011) The controversial role of ABC transporters in clinical oncology. In: Sharom FJ, editor. Essays in Biochemistry: ABC Transporters. 209–232.
|
[15] | Ewart GD, Howells AJ (1998) ABC transporters involved in transport of eye pigment precursors in Drosophila melanogaster. In: Ambudkar SV, Gottesman MM, editors. Methods Enzymol. 213–224.
|
[16] | Mackenzie SM, Brooker MR, Gill TR, Cox GB, Howells AJ, et al. (1999) Mutations in the white gene of Drosophila melanogaster affecting ABC transporters that determine eye colouration. Biochim Biophys Acta 1419: 173–185. doi: 10.1016/s0005-2736(99)00064-4
|
[17] | Ohare K, Murphy C, Levis R, Rubin GM (1984) DNA-sequence of the white locus of Drosophila melanogaster. J Mol Biol 180: 437–455. doi: 10.1016/0022-2836(84)90021-4
|
[18] | Quan GX, Kanda T, Tamura T (2002) Induction of the white egg 3 mutant phenotype by injection of the double-stranded RNA of the silkworm white gene. Insect Mol Biol 11: 217–222. doi: 10.1046/j.1365-2583.2002.00328.x
|
[19] | Sumitani M, Yamamoto DS, Lee JM, Hatakeyama M (2005) Isolation of white gene orthologue of the sawfly, Athalia rosae (Hymenoptera) and its functional analysis using RNA interference. Insect Biochem Mol Biol 35: 231–240. doi: 10.1016/j.ibmb.2004.12.006
|
[20] | Tatematsu K-i, Yamamoto K, Uchino K, Narukawa J, Iizuka T, et al. (2011) Positional cloning of silkworm white egg 2 (w-2) locus shows functional conservation and diversification of ABC transporters for pigmentation in insects. Genes Cells 16: 331–342. doi: 10.1111/j.1365-2443.2011.01490.x
|
[21] | Ricardo S, Lehmann R (2009) An ABC transporter controls export of a Drosophila germ cell attractant. Science 323: 943–946. doi: 10.1126/science.1166239
|
[22] | Hock T, Cottrill T, Keegan J, Garza D (2000) The E23 early gene of Drosophila encodes an ecdysone-inducible ATP-binding cassette transporter capable of repressing ecdysone-mediated gene activation. Proc Natl Acad Sci U S A 97: 9519–9524. doi: 10.1073/pnas.160271797
|
[23] | Buss DS, Callaghan A (2008) Interaction of pesticides with p-glycoprotein and other ABC proteins: A survey of the possible importance to insecticide, herbicide and fungicide resistance. Pestic Biochem Physiol 90: 141–153. doi: 10.1016/j.pestbp.2007.12.001
|
[24] | Labbe R, Caveney S, Donly C (2011) Genetic analysis of the xenobiotic resistance-associated ABC gene subfamilies of the Lepidoptera. Insect Mol Biol 20: 243–256. doi: 10.1111/j.1365-2583.2010.01064.x
|
[25] | Jones CM, Toe HK, Sanou A, Namountougou M, Hughes A, et al. (2012) Additional selection for insecticide resistance in urban malaria vectors: DDT resistance in Anopheles arabiensis from Bobo-Dioulasso, Burkina Faso. PloS One 7.
|
[26] | Gahan LJ, Pauchet Y, Vogel H, Heckel DG (2010) An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genet 6.
|
[27] | Atsumi S, Miyamoto K, Yamamoto K, Narukawa J, Kawai S, et al. (2012) Single amino acid mutation in an ATP-binding cassette transporter gene causes resistance to Bt toxin Cry1Ab in the silkworm, Bombyx mori. Proc Natl Acad Sci U S A 109: E1591–E1598. doi: 10.1073/pnas.1120698109
|
[28] | Liu SM, Zhou S, Tian L, Guo EN, Luan YX, et al. (2011) Genome-wide identification and characterization of ATP-binding cassette transporters in the silkworm, Bombyx mori. BMC Genomics 12.
|
[29] | Roth CW, Holm I, Graille M, Dehoux P, Rzhetsky A, et al. (2003) Identification of the Anopheles gambiae ATP-binding cassette transporter superfamily genes. Mol Cells 15: 150–158.
|
[30] | Gomez-Zurita J, Hunt T, Kopliku F, Vogler AP (2007) Recalibrated tree of leaf beetles (Chrysomelidae) indicates independent diversification of angiosperms and their insect herbivores. PloS One 2.
|
[31] | Termonia A, Hsiao TH, Pasteels JM, Milinkovitch MC (2001) Feeding specialization and host-derived chemical defense in Chrysomeline leaf beetles did not lead to an evolutionary dead end. Proc Natl Acad Sci U S A 98: 3909–3914. doi: 10.1073/pnas.061034598
|
[32] | Opitz SEW, Mueller C (2009) Plant chemistry and insect sequestration. Chemoecology 19: 117–154. doi: 10.1007/s00049-009-0018-6
|
[33] | Pasteels JM, Duffey S, Rowell-Rahier M (1990) Toxins in chrysomelid beetles possible evolutionary sequence from de novo synthesis to derivation from food-plant chemicals. J Chem Ecol 16: 211–222. doi: 10.1007/bf01021280
|
[34] | Pasteels JM, Rowell-Rahier M, Braekman JC, Dupont A (1983) Salicin from host plant as precursor of salicyl aldehyde in defensive secretion of chrysomeline larvae. Physiol Entomol 8: 307–314. doi: 10.1111/j.1365-3032.1983.tb00362.x
|
[35] | Kuhn J, Pettersson EM, Feld BK, Burse A, Termonia A, et al. (2004) Selective transport systems mediate sequestration of plant glucosides in leaf beetles: A molecular basis for adaptation and evolution. Proc Natl Acad Sci U S A 101: 13808–13813. doi: 10.1073/pnas.0402576101
|
[36] | Smiley JT, Horn JM, Rank NE (1985) Ecological effects of salicin at 3 trophic levels - new problems from old adaptations. Science 229: 649–651. doi: 10.1126/science.229.4714.649
|
[37] | Michalski C, Mohagheghi H, Nimtz M, Pasteels JM, Ober D (2008) Salicyl alcohol oxidase of the chemical defense secretion of two chrysomelid leaf beetles - Molecular and functional characterization of two new members of the glucose-methanol-choline oxidoreductase gene family. J Biol Chem 283: 19219–11928. doi: 10.1074/jbc.m802236200
|
[38] | Gross J, Podsiadlowski L, Hilker M (2002) Antimicrobial activity of exocrine glandular secretion of Chrysomela larvae. J Chem Ecol 28: 317–331.
|
[39] | Discher S, Burse A, Tolzin-Banasch K, Heinemann SH, Pasteels JM, et al. (2009) A versatile transport network for sequestering and excreting plant glycosides in leaf beetles provides an evolutionary flexible defense strategy. ChemBioChem 10: 2223–2229. doi: 10.1002/cbic.200900226
|
[40] | Strauss AS, Peters S, Boland W, Burse A (2013) ABC transporter functions as a pacemaker for sequestration of plant glucosides in leaf beetles. eLife 2: e01096. doi: 10.7554/elife.01096
|
[41] | Bodemann RR, Rahfeld P, Stock M, Kunert M, Wielsch N, et al. (2012) Precise RNAi-mediated silencing of metabolically active proteins in the defence secretions of juvenile leaf beetles. Proc R Soc Lond, Ser B: Biol Sci 279: 4126–4134. doi: 10.1098/rspb.2012.1342
|
[42] | Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, et al. (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456: 53–59.
|
[43] | Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29: 644–652. doi: 10.1038/nbt.1883
|
[44] | Pertea G, Huang X, Liang F, Antonescu V, Sultana R, et al. (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19: 651–652. doi: 10.1093/bioinformatics/btg034
|
[45] | Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, et al. (2008) The Pfam protein families database. Nucleic Acids Res 36: D281–D288. doi: 10.1093/nar/gkm960
|
[46] | Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, et al. (2012) The Pfam protein families database. Nucleic Acids Res 40: D290–D301. doi: 10.1093/nar/gkr1065
|
[47] | Keeling PJ, Fast NM (2002) Microsporidia: Biology and evolution of highly reduced intracellular parasites. Annu Rev Microbiol 56: 93–116. doi: 10.1146/annurev.micro.56.012302.160854
|
[48] | Toguebaye BS, Marchand B, Bouix G (1988) Microsporidia of the Chrysomelidae. In: Jolivet P, Petitpierre E, Hsiao TH, editors. Biology of Chrysomelidae: Springer Netherlands. 399–416.
|
[49] | Bauer LS, Pankratz HS (1993) Nosema scripta N. Sp. (Microsporida, Nosematidae), a microsporidian parasite of the cottonwood leaf beetle, Chrysomela scripta (Coleoptera, Chrysomelidae). J Eukaryot Microbiol 40: 135–141. doi: 10.1111/j.1550-7408.1993.tb04893.x
|
[50] | Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30: 3059–3066. doi: 10.1093/nar/gkf436
|
[51] | Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690. doi: 10.1093/bioinformatics/btl446
|
[52] | Broehan G, Kroeger T, Lorenzen M, Merzendorfer H (2013) Functional analysis of the ATP-binding cassette (ABC) transporter gene family of Tribolium castaneum. BMC Genomics 14.
|
[53] | Langmead B (2010) Aligning short sequencing reads with Bowtie. Curr Protoc Bioinformatics Chapter 11: Unit 11.17.
|
[54] | Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11: R106. doi: 10.1186/gb-2010-11-10-r106
|
[55] | Anders S, McCarthy DJ, Chen Y, Okoniewski M, Smyth GK, et al. (2013) Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nature protocols 8: 1765–1786. doi: 10.1038/nprot.2013.099
|
[56] | Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80.
|
[57] | Lander ES, Waterman MS (1988) Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics 2: 231–239. doi: 10.1016/0888-7543(88)90007-9
|
[58] | Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2?ΔΔCT method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262
|
[59] | Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, et al. (2009) The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin Chem 55: 611–622. doi: 10.1373/clinchem.2008.112797
|
[60] | Albrecht C, Viturro E (2007) The ABCA subfamily - gene and protein structures, functions and associated hereditary diseases. Pflugers Arch - Eur J Physiol 453: 581–589. doi: 10.1007/s00424-006-0047-8
|
[61] | Broccardo C, Luciani MF, Chimini G (1999) The ABCA subclass of mammalian transporters. Biochim Biophys Acta 1461: 395–404. doi: 10.1016/s0005-2736(99)00170-4
|
[62] | Zarubica A, Trompier D, Chimini G (2007) ABCA1, from pathology to membrane function. Pflugers Arch - Eur J Physiol 453: 569–579. doi: 10.1007/s00424-006-0108-z
|
[63] | Tsybovsky Y, Orban T, Molday RS, Taylor D, Palczewski K (2013) Molecular organization and ATP-induced conformational changes of ABCA4, the photoreceptor-specific ABC transporter. Structure 21: 854–860. doi: 10.1016/j.str.2013.03.001
|
[64] | Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455: 152–162. doi: 10.1016/0005-2736(76)90160-7
|
[65] | Ueda K, Cardarelli C, Gottesman MM, Pastan I (1987) Expression of a full-length cDNA for the human “MDR1” gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc Natl Acad Sci U S A 84: 3004–3008. doi: 10.1073/pnas.84.9.3004
|
[66] | Gros P, Croop J, Housman D (1986) Mammalian multidrug resistance gene: complete cDNA sequence indicates strong homology to bacterial transport proteins. Cell 47: 371–380. doi: 10.1016/0092-8674(86)90594-5
|
[67] | Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: Role of ATP-dependent transporters. Nature Reviews Cancer 2: 48–58. doi: 10.1038/nrc706
|
[68] | Yu M, Ocana A, Tannock IF (2013) Reversal of ATP-binding cassette drug transporter activity to modulate chemoresistance: why has it failed to provide clinical benefit? Cancer Metastasis Rev 32: 211–227. doi: 10.1007/s10555-012-9402-8
|
[69] | Zhou SF (2008) Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica 38: 802–832. doi: 10.1080/00498250701867889
|
[70] | Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, et al. (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323: 1718–1722. doi: 10.1126/science.1168750
|
[71] | Seeger MA, van Veen HW (2009) Molecular basis of multidrug transport by ABC transporters. Biochim Biophys Acta 1794: 725–737. doi: 10.1016/j.bbapap.2008.12.004
|
[72] | Sarkadi B, Homolya L, Szakacs G, Varadi A (2006) Human multidrug resistance ABCB and ABCG transporters: Participation in a chemoimmunity defense system. Physiol Rev 86: 1179–1236. doi: 10.1152/physrev.00037.2005
|
[73] | Chen KG, Valencia JC, Gillet JP, Hearing VJ, Gottesman MM (2009) Involvement of ABC transporters in melanogenesis and the development of multidrug resistance of melanoma. Pigment Cell Melanoma Res 22: 740–749. doi: 10.1111/j.1755-148x.2009.00630.x
|
[74] | Kawanobe T, Kogure S, Nakamura S, Sato M, Katayama K, et al. (2012) Expression of human ABCB5 confers resistance to taxanes and anthracyclines. Biochem Biophys Res Commun 418: 736–741. doi: 10.1016/j.bbrc.2012.01.090
|
[75] | Oude Elferink RP, Paulusma CC (2007) Function and pathophysiological importance of ABCB4 (MDR3 P-glycoprotein). Pflugers Arch - Eur J Physiol 453: 601–610. doi: 10.1007/s00424-006-0062-9
|
[76] | Stieger B, Meier Y, Meier PJ (2007) The bile salt export pump. Pflugers Arch - Eur J Physiol 453: 611–620. doi: 10.1007/s00424-006-0152-8
|
[77] | Herget M, Tampe R (2007) Intracellular peptide transporters in human - compartmentalization of the “peptidome”. Pflugers Arch - Eur J Physiol 453: 591–600. doi: 10.1007/s00424-006-0083-4
|
[78] | Chavan H, Khan MMT, Tegos G, Krishnamurthy P (2013) Efficient purification and reconstitution of ATP Binding Cassette Transporter B6 (ABCB6) for functional and structural studies. J Biol Chem 288: 22658–22669. doi: 10.1074/jbc.m113.485284
|
[79] | Kiss K, Brozik A, Kucsma N, Toth A, Gera M, et al. (2012) Shifting the paradigm: The putative mitochondrial protein ABCB6 resides in the lysosomes of cells and in the plasma membrane of erythrocytes. Plos One 7.
|
[80] | Pondarre C, Antiochos BB, Campagna DR, Greer EL, Deck KM, et al. (2006) The mitochondrial ATP-binding cassette transporter ABCB7 is essential in mice and participates in cytosolic iron-sulfur cluster biogenesis. Hum Mol Genet 15: 953–964. doi: 10.1093/hmg/ddl012
|
[81] | Ye H, Rouault TA (2010) Human iron-sulfur cluster assembly, cellular iron homeostasis, and disease. Biochemistry 49: 4945–4956. doi: 10.1021/bi1004798
|
[82] | Ichikawa Y, Bayeva M, Ghanefar M, Potini V, Sun L, et al. (2012) Disruption of ATP-binding cassette B8 in mice leads to cardiomyopathy through a decrease in mitochondrial iron export. Proc Natl Acad Sci U S A 109: 4152–4157. doi: 10.1073/pnas.1119338109
|
[83] | Podsiadlowski L, Matha V, Vilcinskas A (1998) Detection of a P-glycoprotein related pump in Chironomus larvae and its inhibition by verapamil and cyclosporin A. Comp Biochem Physiol B: Biochem Mol Biol. 121: 443–450. doi: 10.1016/s0305-0491(98)10137-2
|
[84] | Aurade RM, Jayalakshmi SK, Sreeramulu K (2010) P-glycoprotein ATPase from the resistant pest, Helicoverpa armigera: Purification, characterization and effect of various insecticides on its transport function. Biochim Biophys Acta 1798: 1135–1143. doi: 10.1016/j.bbamem.2010.02.019
|
[85] | Aurade RM, Jayalakshmi SK, Udikeri SS, Sreeramulu K (2012) Modulation of P-glycoprotein ATPase of Helicoverpa armigera by cholesterol: Effects on ATPase activity and interaction of insecticides. Arch Insect Biochem Physiol 79: 47–60. doi: 10.1002/arch.21004
|
[86] | Luo L, Sun YJ, Wu YJ (2013) Abamectin resistance in Drosophila is related to increased expression of P-glycoprotein via the dEGFR and dAkt pathways. Insect Biochem Mol Biol 43: 627–634. doi: 10.1016/j.ibmb.2013.04.006
|
[87] | Porretta D, Gargani M, Bellini R, Medici A, Punelli F, et al. (2008) Defence mechanisms against insecticides temephos and diflubenzuron in the mosquito Aedes caspius: the P-glycoprotein efflux pumps. Med Vet Entomol 22: 48–54. doi: 10.1111/j.1365-2915.2008.00712.x
|
[88] | Srinivas R, Udikeri SS, Jayalakshmi SK, Sreeramulu K (2004) Identification of factors responsible for insecticide resistance in Helicoverpa armigera. Comp Biochem Physiol, C: Toxicol Pharmacol 137: 261–269. doi: 10.1016/j.cca.2004.02.002
|
[89] | Lanning CL, Fine RL, Corcoran JJ, Ayad HM, Rose RL, et al. (1996) Tobacco budworm P-glycoprotein: Biochemical characterization and its involvement in pesticide resistance. Biochim Biophys Acta Gen Subj 1291: 155–162. doi: 10.1016/0304-4165(96)00060-8
|
[90] | Murray CL, Quaglia M, Arnason JT, Morris CE (1994) A putative nicotine pump at the metabolic blood-brain-barrier of the tobacco hornworm. J Neurobiol 25: 23–34. doi: 10.1002/neu.480250103
|
[91] | Sorensen JS, Dearing MD (2006) Efflux transporters as a novel herbivore countermechanism to plant chemical defenses. J Chem Ecol 32: 1181–1196. doi: 10.1007/s10886-006-9079-y
|
[92] | Begun DJ, Whitley P (2000) Genetics of alpha-amanitin resistance in a natural population of Drosophila melanogaster. Heredity 85: 184–190. doi: 10.1046/j.1365-2540.2000.00729.x
|
[93] | Tapadia MG, Lakhotia SC (2005) Expression of mdr49 and mdr65 multidrug resistance genes in larval tissues of Drosophila melanogaster under normal and stress conditions. Cell Stress Chaperones 10: 7–11. doi: 10.1379/csc-67r.1
|
[94] | Petschenka G, Pick C, Wagschal V, Dobler S (2013) Functional evidence for physiological mechanisms to circumvent neurotoxicity of cardenolides in an adapted and a non-adapted hawk-moth species. Proc R Soc Lond, Ser B: Biol Sci 280: 20123089. doi: 10.1098/rspb.2012.3089
|
[95] | Bangert I, Tumulka F, Abele R (2011) The lysosomal polypeptide transporter TAPL: more than a housekeeping factor? Biol Chem 392: 61–66. doi: 10.1515/bc.2011.007
|
[96] | Zhou SF, Wang LL, Di YM, Xue CC, Duan W, et al. (2008) Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development. Curr Med Chem 15: 1981–2039. doi: 10.2174/092986708785132870
|
[97] | Chen Z-S, Tiwari AK (2011) Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. FEBS J 278: 3226–3245. doi: 10.1111/j.1742-4658.2011.08235.x
|
[98] | Aleksandrov AA, Aleksandrov LA, Riordan JR (2007) CFTR (ABCC7) is a hydrolyzable-ligand-gated channel. Pflugers Arch - Eur J Physiol 453: 693–702. doi: 10.1007/s00424-006-0140-z
|
[99] | Hunt JF, Wang C, Ford RC (2013) Cystic Fibrosis Transmembrane Conductance Regulator (ABCC7) Structure. Cold Spring Harb Perspect Med 3.
|
[100] | Bryan J, Munoz A, Zhang X, Dufer M, Drews G, et al. (2007) ABCC8 and ABCC9: ABC transporters that regulate K(+) channels. Pflugers Arch - Eur J Physiol 453: 703–718. doi: 10.1007/s00424-006-0116-z
|
[101] | Heckel DG (2012) Learning the ABCs of Bt: ABC transporters and insect resistance to Bacillus thuringiensis provide clues to a crucial step in toxin mode of action. Pestic Biochem Physiol 104: 103–110. doi: 10.1016/j.pestbp.2012.05.007
|
[102] | Morita M, Imanaka T (2012) Peroxisomal ABC transporters: Structure, function and role in disease. Biochim Biophys Acta 1822: 1387–1396. doi: 10.1016/j.bbadis.2012.02.009
|
[103] | Kashiwayama Y, Seki M, Yasui A, Murasaki Y, Morita M, et al. (2009) 70-kDa peroxisomal membrane protein related protein (P70R/ABCD4) localizes to endoplasmic reticulum not peroxisomes, and NH2-terminal hydrophobic property determines the subcellular localization of ABC subfamily D proteins. Exp Cell Res 315: 190–205. doi: 10.1016/j.yexcr.2008.10.031
|
[104] | Tian Y, Han X, Tian D-l (2012) The biological regulation of ABCE1. IUBMB Life 64: 795–800. doi: 10.1002/iub.1071
|
[105] | Andersen DS, Leevers SJ (2007) The essential Drosophila ATP-binding cassette domain protein, pixie, binds the 40 S ribosome in an ATP-dependent manner and is required for translation initiation. J Biol Chem 282: 14752–14760. doi: 10.1074/jbc.m701361200
|
[106] | Kerr ID (2004) Sequence analysis of twin ATP binding cassette proteins involved in translational control, antibiotic resistance, and ribonuclease L inhibition. Biochem Biophys Res Commun 315: 166–173. doi: 10.1016/j.bbrc.2004.01.044
|
[107] | Kerr ID, Haider AJ, Gelissen IC (2011) The ABCG family of membrane-associated transporters: you don't have to be big to be mighty. Br J Pharmacol 164: 1767–1779. doi: 10.1111/j.1476-5381.2010.01177.x
|
[108] | Moitra K, Silverton L, Limpert K, Im K, Dean M (2011) Moving out: from sterol transport to drug resistance - the ABCG subfamily of efflux pumps. Drug Metabol Drug Interact 26: 105–111. doi: 10.1515/dmdi.2011.015
|
[109] | Tarr PT, Tarling EJ, Bojanic DD, Edwards PA, Baldan A (2009) Emerging new paradigms for ABCG transporters. Biochim Biophys Acta 1791: 584–593. doi: 10.1016/j.bbalip.2009.01.007
|
[110] | Woodward OM, Koettgen A, Koettgen M (2011) ABCG transporters and disease. FEBS J 278: 3215–3225. doi: 10.1111/j.1742-4658.2011.08171.x
|
[111] | Wang L, Kiuchi T, Fujii T, Daimon T, Li M, et al. (2013) Mutation of a novel ABC transporter gene is responsible for the failure to incorporate uric acid in the epidermis of ok mutants of the silkworm, Bombyx mori. Insect Biochem Mol Biol 43: 562–571. doi: 10.1016/j.ibmb.2013.03.011
|
[112] | Itoh TQ, Tanimura T, Matsumoto A (2011) Membrane-bound transporter controls the circadian transcription of clock genes in Drosophila. Genes Cells 16: 1159–1167. doi: 10.1111/j.1365-2443.2011.01559.x
|
[113] | Liu S, Li Q, Liu Z (2013) Genome-wide identification, characterization and phylogenetic analysis of 50 catfish ATP-binding cassette (ABC) transporter genes. Plos One 8.
|
[114] | Popovic M, Zaja R, Loncar J, Smital T (2010) A novel ABC transporter: The first insight into zebrafish (Danio rerio) ABCH1. Mar Environ Res 69: S11–S13. doi: 10.1016/j.marenvres.2009.10.016
|
[115] | Dermauw W, Osborne EJ, Clark RM, Grbic M, Tirry L, et al. (2013) A burst of ABC genes in the genome of the polyphagous spider mite Tetranychus urticae. BMC Genomics 14.
|
[116] | Sturm A, Cunningham P, Dean M (2009) The ABC transporter gene family of Daphnia pulex. BMC Genomics 10: 170. doi: 10.1186/1471-2164-10-170
|
[117] | Xie X, Cheng T, Wang G, Duan J, Niu W, et al. (2012) Genome-wide analysis of the ATP-binding cassette (ABC) transporter gene family in the silkworm, Bombyx mori. Mol Biol Rep 39: 7281–7291. doi: 10.1007/s11033-012-1558-3
|
[118] | Petzold A, Reichwald K, Groth M, Taudien S, Hartmann N, et al. (2013) The transcript catalogue of the short-lived fish Nothobranchius furzeri provides insights into age-dependent changes of mRNA levels. BMC Genomics 14: 185. doi: 10.1186/1471-2164-14-185
|
[119] | Stock M, Gretscher RR, Groth M, Eiserloh S, Boland W, et al. (2013) Putative sugar transporters of the mustard leaf beetle Phaedon cochleariae: Their phylogeny and role for nutrient supply in larval defensive glands. PLoS One 8: e84461. doi: 10.1371/journal.pone.0084461
|
[120] | Dong JS, Lai R, Jennings JL, Link AJ, Hinnebusch AG (2005) The novel ATP-binding cassette protein ARB1 is a shuttling factor that stimulates 40S and 60S ribosome biogenesis. Mol Cell Biol 25: 9859–9873. doi: 10.1128/mcb.25.22.9859-9873.2005
|
[121] | Overbeck TR, Hupfeld T, Krause D, Waldmann-Beushausen R, Chapuy B, et al. (2013) Intracellular ATP-Binding Cassette Transporter A3 is expressed in lung cancer cells and modulates susceptibility to cisplatin and paclitaxel. Oncology 84: 362–370. doi: 10.1159/000348884
|
[122] | Aung T, Chapuy B, Vogel D, Wenzel D, Oppermann M, et al. (2011) Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3. Proc Natl Acad Sci U S A 108: 15336–15341. doi: 10.1073/pnas.1102855108
|
[123] | Fischer S, Kluver N, Burkhardt-Medicke K, Pietsch M, Schmidt AM, et al. (2013) ABCB4 acts as multixenobiotic transporter and active barrier against chemical uptake in zebrafish (Danio rerio) embryos. BMC Biol 11.
|
[124] | Tsuchida M, Emi Y, Kida Y, Sakaguchi M (2008) Human ABC transporter isoform B6 (ABCB6) localizes primarily in the Golgi apparatus. Biochem Biophys Res Commun 369: 369–375. doi: 10.1016/j.bbrc.2008.02.027
|
[125] | Paterson JK, Shukla S, Black CM, Tachiwada T, Garfield S, et al. (2007) Human ABCB6 localizes to both the outer mitochondrial membrane and the plasma membrane. Biochemistry 46: 9443–9452. doi: 10.1021/bi700015m
|
[126] | Jalil YA, Ritz V, Jakimenko A, Schmitz-Salue C, Siebert H, et al. (2008) Vesicular localization of the rat ATP-binding cassette half-transporter rAbcb6. Am J Physiol Cell Physiol 294: C579–C590. doi: 10.1152/ajpcell.00612.2006
|
[127] | Krishnamurthy P, Xie T, Schuetz JD (2007) The role of transporters in cellular heme and porphyrin homeostasis. Pharmacol Ther 114: 345–358. doi: 10.1016/j.pharmthera.2007.02.001
|
[128] | Ulrich DL, Lynch J, Wang Y, Fukuda Y, Nachagari D, et al. (2012) ATP-dependent mitochondrial porphyrin importer ABCB6 protects against phenylhydrazine toxicity. J Biol Chem 287: 12679–12690. doi: 10.1074/jbc.m111.336180
|
[129] | Krishnamurthy P, Schuetz JD (2011) The role of ABCG2 and ABCB6 in porphyrin metabolism and cell survival. Curr Pharm Biotechnol 12: 647–655. doi: 10.2174/138920111795163995
|
[130] | Szakacs G, Annereau JP, Lababidi S, Shankavaram U, Arciello A, et al. (2004) Predicting drug sensitivity and resistance: Profiling ABC transporter genes in cancer cells. Cancer Cell 6: 129–137. doi: 10.1016/j.ccr.2004.06.026
|
[131] | Chavan H, Oruganti M, Krishnamurthy P (2011) The ATP-Binding Cassette transporter ABCB6 is induced by arsenic and protects against arsenic cytotoxicity. Toxicol Sci 120: 519–528. doi: 10.1093/toxsci/kfr008
|
[132] | Yasui K, Mihara S, Zhao C, Okamoto H, Saito-Ohara F, et al. (2004) Alteration in copy numbers of genes as a mechanism for acquired drug resistance. Cancer Res 64: 1403–1410. doi: 10.1158/0008-5472.can-3263-2
|
[133] | Wang Y, Lim L, DiGuistini S, Robertson G, Bohlmann J, et al. (2013) A specialized ABC efflux transporter GcABC-G1 confers monoterpene resistance to Grosmannia clavigera, a bark beetle-associated fungal pathogen of pine trees. New Phytol 197: 886–898. doi: 10.1111/nph.12063
|
[134] | Dow JAT, Davies SA (2006) The Malpighian tubule: Rapid insights from post-genomic biology. J Insect Physiol 52: 365–378. doi: 10.1016/j.jinsphys.2005.10.007
|
[135] | Bayeva M, Khechaduri A, Wu RX, Burke MA, Wasserstrom JA, et al. (2013) ATP-binding cassette B10 regulates early steps of heme synthesis. Circul Res 113: 279–287. doi: 10.1161/circresaha.113.301552
|
[136] | Chloupkova M, LeBard LS, Koeller DM (2003) MDL1 is a high copy suppressor of ATM1: Evidence for a role in resistance to oxidative stress. J Mol Biol 331: 155–165. doi: 10.1016/s0022-2836(03)00666-1
|
[137] | Sullivan DT, Sullivan MC (1975) Transport defects as physiological basis for eye color mutants of Drosophila melanogaster. Biochem Genet 13: 603–613. doi: 10.1007/bf00484918
|
[138] | Ryall RL, Howells AJ (1974) Ommochrome biosynthetic pathway of Drosophila melanogaster - variations in levels of enzyme activities and intermediates during adult development. Insect Biochem 4: 47–61. doi: 10.1016/0020-1790(74)90041-9
|
[139] | Sullivan DT, Grillo SL, Kitos RJ (1974) Subcellular-localization of first 3 enzymes of ommochrome synthetic pathway in Drosophila melanogaster. J Exp Zool 188: 225–233. doi: 10.1002/jez.1401880210
|
[140] | Evans JM, Day JP, Cabrero P, Dow JAT, Davies S-A (2008) A new role for a classical gene: White transports cyclic GMP. J Exp Biol 211: 890–899. doi: 10.1242/jeb.014837
|
[141] | Haunerland NH, Shirk PD (1995) Regional and functional differentiation in the insect fat body. Annu Rev Entomol 40: 121–145. doi: 10.1146/annurev.en.40.010195.001005
|
[142] | Arrese EL, Soulages JL (2010) Insect fat body: Energy, metabolism, and regulation. Annu Rev Entomol 55: 207–225. doi: 10.1146/annurev-ento-112408-085356
|
[143] | Tarling EJ, Vallim TQD, Edwards PA (2013) Role of ABC transporters in lipid transport and human disease. Trends Endocrinol Metab 24: 342–350.
|
[144] | Li JW, Lehmann S, Weissbecker B, Naharros IO, Schutz S, et al. (2013) Odoriferous defensive stink gland transcriptome to identify novel genes necessary for quinone synthesis in the Red Flour Beetle, Tribolium castaneum. PLoS Genet 9.
|
[145] | Elliott AM, Ai-Hajj MA (2009) ABCB8 mediates doxorubicin resistance in melanoma cells by protecting the mitochondrial genome. Mol Cancer Res 7: 79–87. doi: 10.1158/1541-7786.mcr-08-0235
|