全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Decreased Basal Ganglia Activation in Subjects with Chronic Fatigue Syndrome: Association with Symptoms of Fatigue

DOI: 10.1371/journal.pone.0098156

Full-Text   Cite this paper   Add to My Lib

Abstract:

Reduced basal ganglia function has been associated with fatigue in neurologic disorders, as well as in patients exposed to chronic immune stimulation. Patients with chronic fatigue syndrome (CFS) have been shown to exhibit symptoms suggestive of decreased basal ganglia function including psychomotor slowing, which in turn was correlated with fatigue. In addition, CFS patients have been found to exhibit increased markers of immune activation. In order to directly test the hypothesis of decreased basal ganglia function in CFS, we used functional magnetic resonance imaging to examine neural activation in the basal ganglia to a reward-processing (monetary gambling) task in a community sample of 59 male and female subjects, including 18 patients diagnosed with CFS according to 1994 CDC criteria and 41 non-fatigued healthy controls. For each subject, the average effect of winning vs. losing during the gambling task in regions of interest (ROI) corresponding to the caudate nucleus, putamen, and globus pallidus was extracted for group comparisons and correlational analyses. Compared to non-fatigued controls, patients with CFS exhibited significantly decreased activation in the right caudate (p = 0.01) and right globus pallidus (p = 0.02). Decreased activation in the right globus pallidus was significantly correlated with increased mental fatigue (r2 = 0.49, p = 0.001), general fatigue (r2 = 0.34, p = 0.01) and reduced activity (r2 = 0.29, p = 0.02) as measured by the Multidimensional Fatigue Inventory. No such relationships were found in control subjects. These data suggest that symptoms of fatigue in CFS subjects were associated with reduced responsivity of the basal ganglia, possibly involving the disruption of projections from the globus pallidus to thalamic and cortical networks.

References

[1]  Reeves WC, Jones JF, Maloney E, Heim C, Hoaglin DC, et al. (2007) Prevalence of chronic fatigue syndrome in metropolitan, urban, and rural Georgia. Popul Health Metr 5: 5. doi: 10.1186/1478-7954-5-5
[2]  Reyes M, Nisenbaum R, Hoaglin DC, Unger ER, Emmons C, et al. (2003) Prevalence and incidence of chronic fatigue syndrome in Wichita, Kansas. Arch Intern Med 163: 1530–1536. doi: 10.1001/archinte.163.13.1530
[3]  Jason LA, Richman JA, Rademaker AW, Jordan KM, Plioplys AV, et al. (1999) A community-based study of chronic fatigue syndrome. Arch Intern Med 159: 2129–2137. doi: 10.1001/archinte.159.18.2129
[4]  Reynolds KJ, Vernon SD, Bouchery E, Reeves WC (2004) The economic impact of chronic fatigue syndrome. Cost Eff Resour Alloc 2: 4. doi: 10.1186/1478-7547-2-4
[5]  Chaudhuri A, Behan PO (2000) Fatigue and basal ganglia. J Neurol Sci 179: 34–42. doi: 10.1016/s0022-510x(00)00411-1
[6]  Stern RA, Perkins DO, Evans DL (2000) Neuropsychiatric Manifestations of HIV-1 Infection and AIDS; Bloom FE, Kupfer DJ, editors. Philadelphia: Lippincott Williams & Wilkins.
[7]  Chaudhuri A, Behan PO (2004) Fatigue in neurological disorders. Lancet 363: 978–988. doi: 10.1016/s0140-6736(04)15794-2
[8]  Gray F, Adle-Biassette H, Chretien F, Lorin de la Grandmaison G, Force G, et al. (2001) Neuropathology and neurodegeneration in human immunodeficiency virus infection. Pathogenesis of HIV-induced lesions of the brain, correlations with HIV-associated disorders and modifications according to treatments. Clin Neuropathol 20: 146–155.
[9]  Lou JS, Kearns G, Oken B, Sexton G, Nutt J (2001) Exacerbated physical fatigue and mental fatigue in Parkinson's disease. Mov Disord 16: 190–196. doi: 10.1002/mds.1042
[10]  Majer M, Welberg LA, Capuron L, Miller AH, Pagnoni G, et al. (2008) Neuropsychological performance in persons with chronic fatigue syndrome: results from a population-based study. Psychosom Med 70: 829–836. doi: 10.1097/psy.0b013e31817b9793
[11]  Chaudhuri A, Behan PO (2004) In vivo magnetic resonance spectroscopy in chronic fatigue syndrome. Prostaglandins Leukot Essent Fatty Acids 71: 181–183. doi: 10.1016/j.plefa.2004.03.009
[12]  Maes M, Twisk FN, Kubera M, Ringel K (2012) Evidence for inflammation and activation of cell-mediated immunity in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): increased interleukin-1, tumor necrosis factor-alpha, PMN-elastase, lysozyme and neopterin. J Affect Disord 136: 933–939. doi: 10.1016/j.jad.2011.09.004
[13]  Fletcher MA, Zeng XR, Barnes Z, Levis S, Klimas NG (2009) Plasma cytokines in women with chronic fatigue syndrome. J Transl Med 7: 96. doi: 10.1186/1479-5876-7-96
[14]  Patarca-Montero R, Antoni M, Fletcher MA, Klimas NG (2001) Cytokine and other immunologic markers in chronic fatigue syndrome and their relation to neuropsychological factors. Appl Neuropsychol 8: 51–64. doi: 10.1207/s15324826an0801_7
[15]  Cannon JG, Angel JB, Ball RW, Abad LW, Fagioli L, et al. (1999) Acute phase responses and cytokine secretion in chronic fatigue syndrome. J Clin Immunol 19: 414–421.
[16]  Glaser R, Padgett DA, Litsky ML, Baiocchi RA, Yang EV, et al. (2005) Stress-associated changes in the steady-state expression of latent Epstein-Barr virus: implications for chronic fatigue syndrome and cancer. Brain Behav Immun 19: 91–103. doi: 10.1016/j.bbi.2004.09.001
[17]  White PD, Thomas JM, Amess J, Crawford DH, Grover SA, et al. (1998) Incidence, risk and prognosis of acute and chronic fatigue syndromes and psychiatric disorders after glandular fever. Br J Psychiatry 173: 475–481. doi: 10.1192/bjp.173.6.475
[18]  Hickie I, Davenport T, Wakefield D, Vollmer-Conna U, Cameron B, et al. (2006) Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: prospective cohort study. BMJ 333: 575. doi: 10.1136/bmj.38933.585764.ae
[19]  Capuron L, Pagnoni G, Drake DF, Woolwine BJ, Spivey JR, et al. (2012) Dopaminergic mechanisms of reduced basal ganglia responses to hedonic reward during interferon alfa administration. Arch Gen Psychiatry 69: 1044–1053. doi: 10.1001/archgenpsychiatry.2011.2094
[20]  Eisenberger NI, Berkman ET, Inagaki TK, Rameson LT, Mashal NM, et al. (2010) Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward. Biol Psychiatry 68: 748–754. doi: 10.1016/j.biopsych.2010.06.010
[21]  Reuter J, Raedler T, Rose M, Hand I, Glascher J, et al. (2005) Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nat Neurosci 8: 147–148. doi: 10.1038/nn1378
[22]  Fukuda K, Straus SE, Hickie I, Sharpe MC, Dobbins JG, et al. (1994) The chronic fatigue syndrome: a comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann Intern Med 121: 953–959. doi: 10.7326/0003-4819-121-12-199412150-00009
[23]  Reeves WC, Wagner D, Nisenbaum R, Jones JF, Gurbaxani B, et al. (2005) Chronic fatigue syndrome–a clinically empirical approach to its definition and study. BMC Med 3: 19.
[24]  First MB, Spitzer RL, Gibbon M, Williams JB (1997) Structured Clinical Interview for DSM-IV. Washington DC: American Psychiatric Press.
[25]  Zung WW (1965) A Self-Rating Depression Scale. Arch Gen Psychiatry 12: 63–70. doi: 10.1001/archpsyc.1965.01720310065008
[26]  Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29: 162–173. doi: 10.1006/cbmr.1996.0014
[27]  Smets EM, Garssen B, Bonke B, De Haes JC (1995) The Multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. J Psychosom Res 39: 315–325. doi: 10.1016/0022-3999(94)00125-o
[28]  Wagner D, Nisenbaum R, Heim C, Jones JF, Unger ER, et al. (2005) Psychometric properties of the CDC Symptom Inventory for assessment of chronic fatigue syndrome. Popul Health Metr 3: 8.
[29]  Ware JE Jr, Sherbourne CD (1992) The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 30: 473–483. doi: 10.1097/00005650-199206000-00002
[30]  Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9: 357–381. doi: 10.1146/annurev.ne.09.030186.002041
[31]  Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20: 91–127. doi: 10.1016/0165-0173(94)00007-c
[32]  Wichmann T, DeLong MR (1996) Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol 6: 751–758. doi: 10.1016/s0959-4388(96)80024-9
[33]  DeLong MR, Wichmann T (2007) Circuits and circuit disorders of the basal ganglia. Arch Neurol 64: 20–24. doi: 10.1001/archneur.64.1.20
[34]  Bronstein JM, Tagliati M, Alterman RL, Lozano AM, Volkmann J, et al. (2011) Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch Neurol 68: 165. doi: 10.1001/archneurol.2010.260
[35]  The Deep-Brain Stimulation for Parkinson's Disease Study Group (2001) Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease. N Engl J Med 345: 956–963. doi: 10.1056/nejmoa000827
[36]  Kirsch-Darrow L, Zahodne LB, Marsiske M, Okun MS, Foote KD, et al. (2011) The trajectory of apathy after deep brain stimulation: from pre-surgery to 6 months post-surgery in Parkinson's disease. Parkinsonism Relat Disord 17: 182–188. doi: 10.1016/j.parkreldis.2010.12.011
[37]  Miller JM, Vorel SR, Tranguch AJ, Kenny ET, Mazzoni P, et al. (2006) Anhedonia after a selective bilateral lesion of the globus pallidus. Am J Psychiatry 163: 786–788. doi: 10.1176/appi.ajp.163.5.786
[38]  Jorge RE, Starkstein SE, Robinson RG (2010) Apathy following stroke. Can J Psychiatry 55: 350–354.
[39]  Levy R, Dubois B (2006) Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. Cereb Cortex 16: 916–928. doi: 10.1093/cercor/bhj043
[40]  Smith KS, Tindell AJ, Aldridge JW, Berridge KC (2009) Ventral pallidum roles in reward and motivation. Behav Brain Res 196: 155–167. doi: 10.1016/j.bbr.2008.09.038
[41]  Smith KS, Berridge KC, Aldridge JW (2011) Disentangling pleasure from incentive salience and learning signals in brain reward circuitry. Proc Natl Acad Sci U S A 108: E255–264. doi: 10.1073/pnas.1101920108
[42]  Farrar AM, Font L, Pereira M, Mingote S, Bunce JG, et al. (2008) Forebrain circuitry involved in effort-related choice: Injections of the GABAA agonist muscimol into ventral pallidum alter response allocation in food-seeking behavior. Neuroscience 152: 321–330. doi: 10.1016/j.neuroscience.2007.12.034
[43]  Peterson BS, Riddle MA, Cohen DJ, Katz LD, Smith JC, et al. (1993) Human basal ganglia volume asymmetries on magnetic resonance images. Magn Reson Imaging 11: 493–498. doi: 10.1016/0730-725x(93)90468-s
[44]  Castellanos FX, Giedd JN, Marsh WL, Hamburger SD, Vaituzis AC, et al. (1996) Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder. Arch Gen Psychiatry 53: 607–616. doi: 10.1001/archpsyc.1996.01830070053009
[45]  Bruck A, Portin R, Lindell A, Laihinen A, Bergman J, et al. (2001) Positron emission tomography shows that impaired frontal lobe functioning in Parkinson's disease is related to dopaminergic hypofunction in the caudate nucleus. Neurosci Lett 311: 81–84. doi: 10.1016/s0304-3940(01)02124-3
[46]  Glick SD, Ross DA, Hough LB (1982) Lateral asymmetry of neurotransmitters in human brain. Brain Res 234: 53–63. doi: 10.1016/0006-8993(82)90472-3
[47]  Felger JC, Miller AH (2012) Cytokine effects on the basal ganglia and dopamine function: the subcortical source of inflammatory malaise. Front Neuroendocrinol 33: 315–327. doi: 10.1016/j.yfrne.2012.09.003
[48]  Brydon L, Harrison NA, Walker C, Steptoe A, Critchley HD (2008) Peripheral inflammation is associated with altered substantia nigra activity and psychomotor slowing in humans. Biol Psychiatry 63: 1022–1029. doi: 10.1016/j.biopsych.2007.12.007
[49]  Felger JC, Mun J, Kimmel HL, Nye JA, Drake DF, et al. (2013) Chronic interferon-alpha decreases dopamine 2 receptor binding and striatal dopamine release in association with anhedonia-like behavior in nonhuman primates. Neuropsychopharmacology 38: 2179–2187. doi: 10.1038/npp.2013.115
[50]  Fritz-French C, Tyor W (2012) Interferon-alpha (IFNalpha) neurotoxicity. Cytokine Growth Factor Rev 23: 7–14. doi: 10.1016/j.cytogfr.2012.01.001
[51]  Rho MB, Wesselingh S, Glass JD, McArthur JC, Choi S, et al. (1995) A potential role for interferon-alpha in the pathogenesis of HIV-associated dementia. Brain Behav Immun 9: 366–377. doi: 10.1006/brbi.1995.1034

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133