全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Oak Root Response to Ectomycorrhizal Symbiosis Establishment: RNA-Seq Derived Transcript Identification and Expression Profiling

DOI: 10.1371/journal.pone.0098376

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ectomycorrhizal symbiosis is essential for the life and health of trees in temperate and boreal forests where it plays a major role in nutrient cycling and in functioning of the forest ecosystem. Trees with ectomycorrhizal root tips are more tolerant to environmental stresses, such as drought, and biotic stresses such as root pathogens. Detailed information on these molecular processes is essential for the understanding of symbiotic tissue development in order to optimize the benefits of this natural phenomenon. Next generation sequencing tools allow the analysis of non model ectomycorrhizal plant-fungal interactions that can contribute to find the “symbiosis toolkits” and better define the role of each partner in the mutualistic interaction. By using 454 pyrosequencing we compared ectomycorrhizal cork oak roots with non-symbiotic roots. From the two cDNA libraries sequenced, over 2 million reads were obtained that generated 19552 cork oak root unique transcripts. A total of 2238 transcripts were found to be differentially expressed when ECM roots were compared with non-symbiotic roots. Identification of up- and down-regulated gens in ectomycorrhizal roots lead to a number of insights into the molecular mechanisms governing this important symbiosis. In cork oak roots, ectomycorrhizal colonization resulted in extensive cell wall remodelling, activation of the secretory pathway, alterations in flavonoid biosynthesis, and expression of genes involved in the recognition of fungal effectors. In addition, we identified genes with putative roles in symbiotic processes such as nutrient exchange with the fungal partner, lateral root formation or root hair decay. These findings provide a global overview of the transcriptome of an ectomycorrhizal host root, and constitute a foundation for future studies on the molecular events controlling this important symbiosis.

References

[1]  Smith S, Read D (1997) Mycorrhizal symbiosis, Academic Press, London.
[2]  Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154(2): 275–304. doi: 10.1046/j.1469-8137.2002.00397.x
[3]  Nehls U, Grunze N, Willmann M, Reich M, Kuster H (2007) Sugar for my honey: carbohydrate partitioning in ectomycorrhizal symbiosis. Phytochem 68(1): 82–91. doi: 10.1016/j.phytochem.2006.09.024
[4]  Felten J, Kohler A, Morin E, Bhalerao RP, Palme K, et al. (2009) The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. Plant Physiol 151(4): 1991–2005. doi: 10.1104/pp.109.147231
[5]  Luo ZB, Janz D, Jiang X, Gobel C, Wildhagen H, et al. (2009) Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation. Plant Physiol 151(4): 1902–1917. doi: 10.1104/pp.109.143735
[6]  Ditengou FA, Beguiristain T, Lapeyrie F (2000) Root hair elongation is inhibited by hypaphorine, the indole alkaloid from the ectomycorrhizal fungus Pisolithus tinctorius, and restored by indole-3-acetic acid. Planta 211(5): 722–728. doi: 10.1007/s004250000342
[7]  Johansson T, Le Quere A, Ahren D, Soderstrom B, Erlandsson R, et al. (2004) Transcriptional responses of Paxillus involutus and Betula pendula during formation of ectomycorrhizal root tissue. Mol Plant Microbe Interact 17(2): 02–215. doi: 10.1094/mpmi.2004.17.2.202
[8]  Duplessis S, Courty PE, Tagu D, Martin F (2005) Transcript patterns associated with ectomycorrhiza development in Eucalyptus globulus and Pisolithus microcarpus. New Phytol 165(2): 599–611. doi: 10.1111/j.1469-8137.2004.01248.x
[9]  Le Quéré A, Wright DP, Soderstrom B, Tunlid A, Johansson T (2005) Global patterns of gene regulation associated with the development of ectomycorrhiza between birch (Betula pendula Roth.) and Paxillus involutus (Batsch) Fr. Mol Plant Microbe Interact 18(7): 659–673. doi: 10.1094/mpmi-18-0659
[10]  Heller G, Adomas A, Li G, Osborne J, van Zyl L, et al. (2008) Transcriptional analysis of Pinus sylvestris roots challenged with the ectomycorrhizal fungus Laccaria bicolor. BMC Plant Biol 8: 19. doi: 10.1186/1471-2229-8-19
[11]  Martin F, Aerts A, Ahren D, Brun A, Danchin EG, et al. (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452(7183): 88–92.
[12]  Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, et al. (2010) Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464(7291): 1033–1038. doi: 10.1038/nature08867
[13]  Cairney JWG, Chambers SM (1997) Interactions between Pisolithus tinctorius and its hosts: a review of current knowledge. Mycorrhiza 7(3): 117–131. doi: 10.1007/s005720050172
[14]  Sebastiana M, Pereira V, Alcantara A, Pais M, Silva A (2013) Ectomycorrhizal inoculation with Pisolithus tinctorius increases the performance of Quercus suber L. (cork oak) nursery and field seedlings. New Forests 44(6): 937–949. doi: 10.1007/s11056-013-9386-4
[15]  Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, et al. (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15(10): 573–581. doi: 10.1016/j.tplants.2010.06.005
[16]  Hancock KR, Collette V, Fraser K, Greig M, Xue H, et al. (2012) Expression of the R2R3-MYB transcription factor TaMYB14 from Trifolium arvense activates proanthocyanidin biosynthesis in the legumes Trifolium repens and Medicago sativa. Plant Physiol 159(3): 1204–1220. doi: 10.1104/pp.112.195420
[17]  Bonke M, Thitamadee S, Mahonen AP, Hauser MT, Helariutta Y (2003) APL regulates vascular tissue identity in Arabidopsis. Nature 426(6963): 181–186. doi: 10.1038/nature02100
[18]  Nole-Wilson S, Tranby TL, Krizek BA (2005) AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states. Plant Mol Biol 57(5): 613–628. doi: 10.1007/s11103-005-0955-6
[19]  Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15(5): 247–258. doi: 10.1016/j.tplants.2010.02.006
[20]  Kloppholz S, Kuhn H, Requena N (2011) A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr Biol 21(14): 1204–1209. doi: 10.1016/j.cub.2011.06.044
[21]  Swindell WR, Huebner M, Weber AP (2007) Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 8: 125. doi: 10.1186/1471-2164-8-125
[22]  Horan DP, Chilvers GA, Lapeyrie FF (1988) Time sequence of the infection process eucalypt ectomycorrhizas. New Phytol 109(4): 451–458. doi: 10.1111/j.1469-8137.1988.tb03720.x
[23]  Schiefelbein J (2003) Cell-fate specification in the epidermis: a common patterning mechanism in the root and shoot. Curr Opin Plant Biol 6(1): 74–78. doi: 10.1016/s136952660200002x
[24]  Song SK, Ryu KH, Kang YH, Song JH, Cho YH, et al. (2011) Cell fate in the Arabidopsis root epidermis is determined by competition between WEREWOLF and CAPRICE. Plant Physiol 157(3): 1196–1208. doi: 10.1104/pp.111.185785
[25]  Kusano H, Testerink C, Vermeer JE, Tsuge T, Shimada H, et al. (2008) The Arabidopsis Phosphatidylinositol Phosphate 5-Kinase PIP5K3 is a key regulator of root hair tip growth. Plant Cell 20(2): 367–380. doi: 10.1105/tpc.107.056119
[26]  Martin F, Koholer A, Duplessis S (2007) Living in harmony in the wood underground: ectomycorrhizal genomics. Curr Opin Plant Biol 10: 204–210. doi: 10.1016/j.pbi.2007.01.006
[27]  Splivallo R, Fischer U, Gobel C, Feussner I, Karlovsky P (2009) Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiol 150(4): 2018–2029. doi: 10.1104/pp.109.141325
[28]  Vanneste S, De Rybel B, Beemster GT, Ljung K, De Smet I, et al. (2005) Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana. Plant Cell 17(11): 3035–3050. doi: 10.1105/tpc.105.035493
[29]  Heller G, Lunden K, Finlay RD, Asiegbu FO, Elfstrand M (2012) Expression analysis of Clavata1-like and Nodulin21-like genes from Pinus sylvestris during ectomycorrhiza formation. Mycorrhiza 22(4): 271–277. doi: 10.1007/s00572-011-0402-2
[30]  Felten J, Legue V, Ditengou FA (2010) Lateral root stimulation in the early interaction between Arabidopsis thaliana and the ectomycorrhizal fungus Laccaria bicolor: is fungal auxin the trigger? Plant Signal Behav 5(7): 864–867. doi: 10.4161/psb.5.7.11896
[31]  Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52(1): 98–111. doi: 10.1111/j.1744-7909.2010.00905.x
[32]  Zhao J, Pang Y, Dixon RA (2010) The mysteries of proanthocyanidin transport and polymerization. Plant Physiol 153: 437–443. doi: 10.1104/pp.110.155432
[33]  Morandi D, le Signor C, Gianinazzi-Pearson V, Duc G (2009) A Medicago truncatula mutant hyper-responsive to mycorrhiza and defective for nodulation. Mycorrhiza 19(6): 435–441. doi: 10.1007/s00572-009-0242-5
[34]  Morandi D, Branzanti B, Gianinazzi-Pearson V (1992) Effect of some plant flavonoids on in vitro behaviour of an arbuscular mycorrhizal fungus. Agronomie 12(10): 811–816. doi: 10.1051/agro:19921012
[35]  Larsen PE, Sreedasyam A, Trivedi G, Podila GK, Cseke LJ, et al. (2011) Using next generation transcriptome sequencing to predict an ectomycorrhizal metabolome. BMC Syst Biol 5: 70. doi: 10.1186/1752-0509-5-70
[36]  Kikuchi K, Matsushita N, Suzuki K, Hogetsu T (2007) Flavonoids induce germination of basidiospores of the ectomycorrhizal fungus Suillus bovinus. Mycorrhiza 17(7): 563–570. doi: 10.1007/s00572-007-0131-8
[37]  Fujii S, Hayashi T, Mizuno K (2010) Sucrose synthase is an integral component of the cellulose synthesis machinery. Plant Cell Physiol 51(2): 294–301. doi: 10.1093/pcp/pcp190
[38]  Trillas MI, Cotxarrera L, Casanova E, Cortadellas N (2000) Ultrastructural changes and localization of chitin and callose in compatible and incompatible interactions between carnation callus and Fusarium oxysporum. Physiol Mol Plant Pathol 56(3): 107–116.
[39]  Scheible WR, Pauly M (2004) Glycosyltransferases and cell wall biosynthesis: novel players and insights. Curr Opin Plant Biol 7(3): 285–295. doi: 10.1016/j.pbi.2004.03.006
[40]  Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6(11): 850–861. doi: 10.1038/nrm1746
[41]  Hobson G, Grierson D (1993) Tomato. In: G.Seymour, J.Taylor, and G.Tucker (eds). Biochemistry of fruit ripening: Chapman & Hall, London. Pp 405–442.
[42]  Eklof JM, Brumer H (2010) The XTH gene family: an update on enzyme structure, function, and phylogeny in xyloglucan remodeling. Plant Physiol 153(2): 456–466. doi: 10.1104/pp.110.156844
[43]  Micheli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6(9): 414–419. doi: 10.1016/s1360-1385(01)02045-3
[44]  Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42(5): 462–468. doi: 10.1093/pcp/pce061
[45]  Steinwand BJ, Kieber JJ (2010) The role of receptor-like kinases in regulating cell wall function. Plant Physiol 153(2): 479–484. doi: 10.1104/pp.110.155887
[46]  Gebbie LK, Burn JE, Hocart CH, Williamson RE (2005) Genes encoding ADP-ribosylation factors in Arabidopsis thaliana L. Heyn. genome analysis and antisense suppression. J Exp Bot 56(414): 1079–1091. doi: 10.1093/jxb/eri099
[47]  Li Y, Jones L, McQueen-Mason S (2003) Expansins and cell growth. Curr Opin Plant Biol 6(6): 603–610. doi: 10.1016/j.pbi.2003.09.003
[48]  Flores-Monterroso A, Canales J, de la Torre F, Avila C, Canovas FM (2013) Identification of genes differentially expressed in ectomycorrhizal roots during the Pinus pinaster-Laccaria bicolor interaction. Planta 237(6): 637–1650. doi: 10.1007/s00425-013-1874-4
[49]  Péret B, De Rybel B, Casimiro I, Benkova E, Swarup R, et al. (2009) Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14(7): 399–408. doi: 10.1016/j.tplants.2009.05.002
[50]  Wang D, Dong X (2011) A highway for war and peace: the secretory pathway in plant-microbe interactions. Mol Plant 4(4): 581–587. doi: 10.1093/mp/ssr053
[51]  Brodsky FM (2012) Diversity of clathrin function: new tricks for an old protein. Annu Rev Cell Dev Biol 28: 309–336. doi: 10.1146/annurev-cellbio-101011-155716
[52]  d'Enfert C, Gensse M, Gaillardin C (1992) Fission yeast and a plant have functional homologues of the Sar1 and Sec12 proteins involved in ER to Golgi traffic in budding yeast. EMBO J 11(11): 4205–4211.
[53]  Meyer HA, Grau H, Kraft R, Kostka S, Prehn S, et al. (2000) Mammalian Sec61 is associated with Sec62 and Sec63. J Biol Chem 275(19): 14550–14557. doi: 10.1074/jbc.275.19.14550
[54]  Rose JK, Lee SJ (2010) Straying off the highway: trafficking of secreted plant proteins and complexity in the plant cell wall proteome. Plant Physiol 153(2): 433–436. doi: 10.1104/pp.110.154872
[55]  El-Kasmi F, Pacher T, Strompen G, Stierhof YD, Muller LM, et al. (2011) Arabidopsis SNARE protein SEC22 is essential for gametophyte development and maintenance of Golgi-stack integrity. Plant J 66(2): 268–279. doi: 10.1111/j.1365-313x.2011.04487.x
[56]  Wu X, Chen T, Zheng M, Chen Y, Teng N, et al. (2008) Integrative proteomic and cytological analysis of the effects of extracellular Ca(2+) influx on Pinus bungeana pollen tube development. J Proteome Res 7(10): 299–4312. doi: 10.1021/pr800241u
[57]  Barkefors I, Fuchs PF, Heldin J, Bergstrom T, Forsberg-Nilsson K, et al. (2011) Exocyst complex component 3-like 2 (EXOC3L2) associates with the exocyst complex and mediates directional migration of endothelial cells. J Biol Chem 286(27): 24189–24199. doi: 10.1074/jbc.m110.212209
[58]  Wang D, Griffitts J, Starker C, Fedorova E, Limpens E, et al. (2010) A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science 327(5969): 1126–1129. doi: 10.1126/science.1184096
[59]  Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 3(9): 715–727. doi: 10.1038/nrn919
[60]  Sulieman S (2011) Does GABA increase the efficiency of symbiotic N2 fixation in legumes? Plant Signal Behav 6(1): 32–36. doi: 10.4161/psb.6.1.14318
[61]  Barratt DH, Derbyshire P, Findlay K, Pike M, Wellner N, et al. (2009) Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proc Natl Acad Sci U S A 106(31): 13124–13129. doi: 10.1073/pnas.0900689106
[62]  Gutjahr C, Novero M, Guether M, Montanari O, Udvardi M, et al. (2009) Presymbiotic factors released by the arbuscular mycorrhizal fungus Gigaspora margarita induce starch accumulation in Lotus japonicus roots. New Phytol 183(1): 53–61. doi: 10.1111/j.1469-8137.2009.02871.x
[63]  O'Leary B, Park J, Plaxton WC (2011) The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J 436(1): 15–34. doi: 10.1042/bj20110078
[64]  Nomura M, Mai HT, Fujii M, Hata S, Izui K, et al. (2006) Phosphoenolpyruvate carboxylase plays a crucial role in limiting nitrogen fixation in Lotus japonicus nodules. Plant Cell Physiol 47(5): 613–621. doi: 10.1093/pcp/pcj028
[65]  Fotelli MN, Tsikou D, Kolliopoulou A, Aivalakis G, Katinakis P, et al. (2011) Nodulation enhances dark CO2 fixation and recycling in the model legume Lotus japonicus. J Exp Bot 62(8): 2959–2971. doi: 10.1093/jxb/err009
[66]  Muller T, Avolio M, Olivi M, Benjdia M, Rikirsch E, et al. (2007) Nitrogen transport in the ectomycorrhiza association: the Hebeloma cylindrosporum-Pinus pinaster model. Phytochem 68(1): 41–51. doi: 10.1016/j.phytochem.2006.09.021
[67]  McHale L, Tan X, Koehl P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7(4): 212. doi: 10.1186/gb-2006-7-4-212
[68]  Durrant WE, Dong X (2004) Systemic acquired resistence. An Rev Phytopatol 42: 185–209. doi: 10.1146/annurev.phyto.42.040803.140421
[69]  Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113(7): 935–944. doi: 10.1016/s0092-8674(03)00429-x
[70]  Peleg-Grossman S, Golani Y, Kaye Y, Melamed-Book N, Levine A (2009) NPR1 protein regulates pathogenic and symbiotic interactions between Rhizobium and legumes and non-legumes. PLoS One 4(12):e 8399. doi: 10.1371/journal.pone.0008399
[71]  Chinchilla D, Shan L, He P, de Vries S, Kemmerling B (2009) One for all: the receptor-associated kinase BAK1. Trends Plant Sci 14(10): 535–541. doi: 10.1016/j.tplants.2009.08.002
[72]  Shan L, He P, Li J, Heese A, Peck SC, et al. (2008) Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe 4(1): 17–27. doi: 10.1016/j.chom.2008.05.017
[73]  Plett JM, Kemppainen M, Kale SD, Kohler A, Legue V, et al. (2011) A secreted effector protein of Laccaria bicolor is required for symbiosis development. Curr Biol 21(14): 1197–1203. doi: 10.1016/j.cub.2011.05.033
[74]  Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo P, et al. (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417(6892): 962–966. doi: 10.1038/nature00842
[75]  Capoen W, Sun J, Wysham D, Otegui MS, Venkateshwaran M, et al. (2011) Nuclear membranes control symbiotic calcium signaling of legumes. Proc Natl Acad Sci USA 108(34): 14348–14353. doi: 10.1073/pnas.1107912108
[76]  Hibbett DS, Matheny PB (2009) The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed molecular clock analyses. BMC Biol 7: 13. doi: 10.1186/1741-7007-7-13
[77]  Nakagawa T, Kaku H, Shimoda Y, Sugiyama A, Shimamura M, et al. (2011) From defense to symbiosis: limited alterations in the kinase domain of LysM receptor-like kinases are crucial for evolution of legume–Rhizobium symbiosis. Plant J 65: 169–180. doi: 10.1111/j.1365-313x.2010.04411.x
[78]  Wan CY, Wilkins TA (1994) A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Anal Biochem 223(1): 7–12. doi: 10.1006/abio.1994.1538
[79]  Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Muller WE, et al. (2004) Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res 14(6): 1147–1159. doi: 10.1101/gr.1917404
[80]  Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, et al. (2008) The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform 9: 386. doi: 10.1186/1471-2105-9-386
[81]  Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3): 403–410. doi: 10.1016/s0022-2836(05)80360-2
[82]  Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, et al. (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinform 21(18): 3674–3676. doi: 10.1093/bioinformatics/bti610
[83]  Risso D, Schwartz K, Sherlock G, Dudoit S (2011) GC-content normalization for RNA-Seq data. BMC Bioinform 12: 480. doi: 10.1186/1471-2105-12-480
[84]  Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinform 26(1): 139–140. doi: 10.1093/bioinformatics/btp616
[85]  McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40(10): 4288–4297. doi: 10.1093/nar/gks042
[86]  Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B (Methodological) 57(1): 289–300.
[87]  Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133