Genomic imprinting describes an epigenetic process through which genes can be expressed in a parent-of-origin-specific manner. The monoallelic expression of imprinted genes renders them particularly susceptible to disease causing mutations. A large proportion of imprinted genes are expressed in the brain, but little is known about their functions. Indeed, it has proven difficult to identify cell type-specific imprinted genes due to the heterogeneity of cell types within the brain. Here we used laser capture microdissection of visual cortical neurons and found evidence that sorting nexin 14 (Snx14) is a neuronally imprinted gene in mice. SNX14 protein levels are high in the brain and progressively increase during neuronal development and maturation. Snx14 knockdown reduces intrinsic excitability and severely impairs both excitatory and inhibitory synaptic transmission. These data reveal a role for monoallelic Snx14 expression in maintaining normal neuronal excitability and synaptic transmission.
References
[1]
Barton SC, Surani MA, Norris ML (1984) Role of paternal and maternal genomes in mouse development. Nature 311: 374–376. doi: 10.1038/311374a0
[2]
McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37: 179–183. doi: 10.1016/0092-8674(84)90313-1
[3]
Luedi PP, Hartemink AJ, Jirtle RL (2005) Genome-wide prediction of imprinted murine genes. Genome Res 15: 875–884. doi: 10.1101/gr.3303505
[4]
Luedi PP, Dietrich FS, Weidman JR, Bosko JM, Jirtle RL, et al. (2007) Computational and experimental identification of novel human imprinted genes. Genome Res 17: 1723–1730. doi: 10.1101/gr.6584707
[5]
Wilkinson LS, Davies W, Isles AR (2007) Genomic imprinting effects on brain development and function. Nat Rev Neurosci 8: 832–843. doi: 10.1038/nrn2235
[6]
Crespi B (2008) Genomic imprinting in the development and evolution of psychotic spectrum conditions. Biol Rev Camb Philos Soc 83: 441–493. doi: 10.1111/j.1469-185x.2008.00050.x
[7]
DeVeale B, van der Kooy D, Babak T (2012) Critical evaluation of imprinted gene expression by RNA-Seq: a new perspective. PLoS Genet 8: e1002600. doi: 10.1371/journal.pgen.1002600
[8]
Gregg C, Zhang J, Weissbourd B, Luo S, Schroth GP, et al. (2010) High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science 329: 643–648. doi: 10.1126/science.1190830
[9]
Gregg C, Zhang J, Butler JE, Haig D, Dulac C (2010) Sex-specific parent-of-origin allelic expression in the mouse brain. Science 329: 682–685. doi: 10.1126/science.1190831
[10]
Maenaka S, Hikichi T, Imai MA, Minamoto T, Kawahara E (2006) Loss of imprinting in IGF2 in colorectal carcinoma assessed by microdissection. Oncol Rep 15: 791–795. doi: 10.3892/or.15.4.791
[11]
Kamikihara T, Arima T, Kato K, Matsuda T, Kato H, et al. (2005) Epigenetic silencing of the imprinted gene ZAC by DNA methylation is an early event in the progression of human ovarian cancer. Int J Cancer 115: 690–700. doi: 10.1002/ijc.20971
[12]
Guez-Barber D, Fanous S, Harvey BK, Zhang Y, Lehrmann E, et al. (2012) FACS purification of immunolabeled cell types from adult rat brain. J Neurosci Methods 203: 10–18. doi: 10.1016/j.jneumeth.2011.08.045
[13]
Huang HS, Allen JA, Mabb AM, King IF, Miriyala J, et al. (2012) Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons. Nature 481: 185–189. doi: 10.1038/nature10726
[14]
Barlow DP (2011) Genomic imprinting: a mammalian epigenetic discovery model. Annu Rev Genet 45: 379–403. doi: 10.1146/annurev-genet-110410-132459
[15]
Sutcliffe JS, Nakao M, Christian S, Orstavik KH, Tommerup N, et al. (1994) Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region. Nat Genet 8: 52–58. doi: 10.1038/ng0994-52
[16]
Yoon BJ, Herman H, Sikora A, Smith LT, Plass C, et al. (2002) Regulation of DNA methylation of Rasgrf1. Nat Genet 30: 92–96. doi: 10.1038/ng795
[17]
Balana B, Maslennikov I, Kwiatkowski W, Stern KM, Bahima L, et al. (2011) Mechanism underlying selective regulation of G protein-gated inwardly rectifying potassium channels by the psychostimulant-sensitive sorting nexin 27. Proc Natl Acad Sci U S A 108: 5831–5836. doi: 10.1073/pnas.1018645108
[18]
Wang X, Zhao Y, Zhang X, Badie H, Zhou Y, et al. (2013) Loss of sorting nexin 27 contributes to excitatory synaptic dysfunction by modulating glutamate receptor recycling in Down's syndrome. Nat Med 19: 473–480. doi: 10.1038/nm.3117
[19]
Teasdale RD, Collins BM (2012) Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: structures, functions and roles in disease. Biochem J 441: 39–59. doi: 10.1042/bj20111226
[20]
Worby CA, Dixon JE (2002) Sorting out the cellular functions of sorting nexins. Nat Rev Mol Cell Biol 3: 919–931. doi: 10.1038/nrm974
[21]
Vervoort VS, Viljoen D, Smart R, Suthers G, DuPont BR, et al. (2002) Sorting nexin 3 (SNX3) is disrupted in a patient with a translocation t(6;13)(q21;q12) and microcephaly, microphthalmia, ectrodactyly, prognathism (MMEP) phenotype. J Med Genet 39: 893–899. doi: 10.1136/jmg.39.12.893
[22]
Seelan RS, Khalyfa A, Lakshmanan J, Casanova MF, Parthasarathy RN (2008) Deciphering the lithium transcriptome: microarray profiling of lithium-modulated gene expression in human neuronal cells. Neuroscience 151: 1184–1197. doi: 10.1016/j.neuroscience.2007.10.045
[23]
Becker K, Di Donato N, Holder-Espinasse M, Andrieux J, Cuisset JM, et al. (2012) De novo microdeletions of chromosome 6q14.1-q14.3 and 6q12.1-q14.1 in two patients with intellectual disability - further delineation of the 6q14 microdeletion syndrome and review of the literature. European journal of medical genetics 55: 490–497. doi: 10.1016/j.ejmg.2012.03.003
[24]
Lunn ML, Nassirpour R, Arrabit C, Tan J, McLeod I, et al. (2007) A unique sorting nexin regulates trafficking of potassium channels via a PDZ domain interaction. Nat Neurosci 10: 1249–1259. doi: 10.1038/nn1953
[25]
Cai L, Loo LS, Atlashkin V, Hanson BJ, Hong W (2011) Deficiency of sorting nexin 27 (SNX27) leads to growth retardation and elevated levels of N-methyl-D-aspartate receptor 2C (NR2C). Mol Cell Biol 31: 1734–1747. doi: 10.1128/mcb.01044-10