全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Lack of Correlation between the Kinase Activity of LRRK2 Harboring Kinase-Modifying Mutations and Its Phosphorylation at Ser910, 935, and Ser955

DOI: 10.1371/journal.pone.0097988

Full-Text   Cite this paper   Add to My Lib

Abstract:

Leucine-rich repeat kinase 2 (LRRK2) is extensively phosphorylated in cells within a region amino-terminal to the leucine-rich repeat domain. Since phosphorylation in this region of LRRK2, including Ser910, Ser935, Ser955, and Ser973, is significantly downregulated upon treatment with inhibitors of LRRK2, it has been hypothesized that signaling pathways downstream of the kinase activity of LRRK2 are involved in regulating the phosphorylation of LRRK2, although the precise mechanism has remained unknown. Here we examined the effects of LRRK2 inhibitors on the phosphorylation state at Ser910, Ser935, and Ser955 in a series of kinase-inactive mutants of LRRK2. We found that the responses of LRRK2 to the inhibitors varied among mutants, in a manner not consistent with the above-mentioned hypothesis. Notably, one of the kinase-inactive mutants, T2035A LRRK2, underwent phosphorylation, as well as the inhibitor-induced dephosphorylation, at Ser910, Ser935, and Ser955, to a similar extent to those observed with wild-type LRRK2. These results suggest that the kinase activity of LRRK2 is not involved in the common mechanism of inhibitor-induced dephosphorylation of LRRK2.

References

[1]  Fahn S (2003) Description of Parkinson’s disease as a clinical syndrome. Ann N Y Acad Sci 991: 1–14. doi: 10.1111/j.1749-6632.2003.tb07458.x
[2]  Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, et al. (1997) Alpha-synuclein in Lewy bodies. Nature 388: 839–840. doi: 10.1038/42166
[3]  Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, et al. (1998) Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 152: 879–884.
[4]  Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 28: 57–87. doi: 10.1146/annurev.neuro.28.061604.135718
[5]  Paisán-Ruíz C, Jain S, Evans EW, Gilks WP, Simón J, et al. (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44: 595–600. doi: 10.1016/j.neuron.2004.10.023
[6]  Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, et al. (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44: 601–607. doi: 10.1016/j.neuron.2004.11.005
[7]  Healy DG, Falchi M, O’Sullivan SS, Bonifati V, Durr A, et al. (2008) Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol 7: 583–590. doi: 10.1016/s1474-4422(08)70117-0
[8]  Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, et al. (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 41: 1303–1307. doi: 10.1038/ng.485
[9]  Simón-Sánchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, et al. (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41: 1308–1312. doi: 10.1038/ng.487
[10]  Lobbestael E, Baekelandt V, Taymans JM (2012) Phosphorylation of LRRK2: from kinase to substrate. Biochem Soc Trans 40: 1102–1110. doi: 10.1042/bst20120128
[11]  Vancraenenbroeck R, Lobbestael E, Weeks SD, Strelkov SV, Baekelandt V, et al. (2012) Expression, purification and preliminary biochemical and structural characterization of the leucine rich repeat namesake domain of leucine rich repeat kinase 2. Biochim Biophys Acta 1824: 450–460. doi: 10.1016/j.bbapap.2011.12.009
[12]  West AB, Moore DJ, Choi C, Andrabi SA, Li X, et al. (2007) Parkinson’s disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum Mol Genet 16: 223–232. doi: 10.1093/hmg/ddl471
[13]  Nichols RJ, Dzamko N, Morrice NA, Campbell DG, Deak M, et al. (2010) 14-3-3 binding to LRRK2 is disrupted by multiple Parkinson’s disease-associated mutations and regulates cytoplasmic localization. Biochem J 430: 393–404. doi: 10.1042/bj20100483
[14]  Gloeckner CJ, Boldt K, von Zweydorf F, Helm S, Wiesent L, et al. (2010) Phosphopeptide analysis reveals two discrete clusters of phosphorylation in the N-terminus and the Roc domain of the Parkinson-disease associated protein kinase. J Proteome Res 9: 1738–1745. doi: 10.1021/pr9008578
[15]  Dzamko N, Deak M, Hentati F, Reith AD, Prescott AR, et al. (2010) Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(910)/Ser(935), disruption of 14-3-3 binding and altered cytoplasmic localization. Biochem J 430: 405–413. doi: 10.1042/bj20100784
[16]  Doggett EA, Zhao J, Mork CN, Hu D, Nichols RJ (2012) Phosphorylation of LRRK2 serines 955 and 973 is disrupted by Parkinson’s disease mutations and LRRK2 pharmacological inhibition. J Neurochem 120: 37–45. doi: 10.1111/j.1471-4159.2011.07537.x
[17]  Dzamko N, Inesta-Vaquera F, Zhang J, Xie C, Cai H, et al. (2012) The IkappaB kinase family phosphorylates the Parkinson’s disease kinase LRRK2 at Ser935 and Ser910 during Toll-like receptor signaling. PLoS One 7: e39132. doi: 10.1371/journal.pone.0039132
[18]  Li X, Wang QJ, Pan N, Lee S, Zhao Y, et al. (2011) Phosphorylation-dependent 14-3-3 binding to LRRK2 is impaired by common mutations of familial Parkinson’s disease. PLoS One 6: e17153. doi: 10.1371/journal.pone.0017153
[19]  Deng X, Dzamko N, Prescott A, Davies P, Liu Q, et al. (2011) Characterization of a selective inhibitor of the Parkinson’s disease kinase LRRK2. Nat Chem Biol 7: 203–205. doi: 10.1038/nchembio.538
[20]  Choi H, Zhang J, Deng X (2012) Brain penetrant LRRK2 inhibitor. ACS Med Chem Lett 3: 658–662. doi: 10.1021/ml300123a
[21]  Hermanson SB, Carlson CB, Riddle SM, Zhao J, Vogel KW, et al. (2012) Screening for novel LRRK2 inhibitors using a high-throughput TR-FRET cellular assay for LRRK2 Ser935 phosphorylation. PLoS One 7: e43580. doi: 10.1371/journal.pone.0043580
[22]  Reith AD, Bamborough P, Jandu K, Andreotti D, Mensah L, et al. (2012) GSK2578215A; a potent and highly selective 2-arylmethyloxy-5-substitutent-N-arylben?zamideLRRK2 kinase inhibitor. Bioorg Med Chem Lett 22: 5625–5629. doi: 10.1016/j.bmcl.2012.06.104
[23]  Sheng Z, Zhang S, Bustos D, Kleinheinz T, Le Pichon CE, et al. (2012) Ser1292 autophosphorylation is an indicator of LRRK2 kinase activity and contributes to the cellular effects of PD mutations. Sci Transl Med 4: 164ra161. doi: 10.1126/scitranslmed.3004485
[24]  Zhang J, Deng X, Choi HG, Alessi DR, Gray NS (2012) Characterization of TAE684 as a potent LRRK2 kinase inhibitor. Bioorg Med Chem Lett 22: 1864–1869. doi: 10.1016/j.bmcl.2012.01.084
[25]  Delbroek L, Van Kolen K, Steegmans L, da Cunha R, Mandemakers W, et al. (2013) Development of an enzyme-linked immunosorbent assay for detection of cellular and in vivo LRRK2 S935 phosphorylation. J Pharm Biomed Anal 76: 49–58. doi: 10.1016/j.jpba.2012.12.002
[26]  Franzini M, Ye XM, Adler M, Aubele DL, Garofalo AW, et al. (2013) Triazolopyridazine LRRK2 kinase inhibitors. Bioorg Med Chem Lett 23: 1967–1973. doi: 10.1016/j.bmcl.2013.02.043
[27]  Lobbestael E, Zhao J, Rudenko IN, Beylina A, Gao F, et al.. (2013) Identification of protein phosphatase 1 as a regulator of the LRRK2 phosphorylation cycle. Biochem J.
[28]  Zhao J, Hermanson SB, Carlson CB, Riddle SM, Vogel KW, et al. (2012) Pharmacological inhibition of LRRK2 cellular phosphorylation sites provides insight into LRRK2 biology. Biochem Soc Trans 40: 1158–1162. doi: 10.1042/bst20120137
[29]  Rudenko IN, Kaganovich A, Hauser DN, Beylina A, Chia R, et al. (2012) The G2385R variant of leucine-rich repeat kinase 2 associated with Parkinson’s disease is a partial loss-of-function mutation. Biochem J 446: 99–111. doi: 10.1042/bj20120637
[30]  Ito G, Okai T, Fujino G, Takeda K, Ichijo H, et al. (2007) GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson’s disease. Biochemistry 46: 1380–1388. doi: 10.1021/bi061960m
[31]  Kamikawaji S, Ito G, Iwatsubo T (2009) Identification of the autophosphorylation sites of LRRK2. Biochemistry 48: 10963–10975. doi: 10.1021/bi9011379
[32]  Ito G, Iwatsubo T (2012) Re-examination of the dimerization state of leucine-rich repeat kinase 2: predominance of the monomeric form. Biochem J 441: 987–994. doi: 10.1042/bj20111215
[33]  Kamikawaji S, Ito G, Sano T, Iwatsubo T (2013) Differential Effects of Familial Parkinson Mutations in LRRK2 Revealed by a Systematic Analysis of Autophosphorylation. Biochemistry 52: 6052–6062. doi: 10.1021/bi400596m
[34]  Smith WW, Pei Z, Jiang H, Dawson VL, Dawson TM, et al. (2006) Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat Neurosci 9: 1231–1233. doi: 10.1038/nn1776
[35]  H?big K, Gloeckner CJ, Miralles MG, Gillardon F, Schulte C, et al. (2010) ARHGEF7 (Beta-PIX) acts as guanine nucleotide exchange factor for leucine-rich repeat kinase 2. PLoS One 5: e13762. doi: 10.1371/journal.pone.0013762
[36]  Luerman GC, Nguyen C, Samaroo H, Loos P, Xi H, et al.. (2013) Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target effects of LRRK-2-IN-1. J Neurochem: 1–16.
[37]  Ikenoya M, Hidaka H, Hosoya T, Suzuki M, Yamamoto N, et al. (2002) Inhibition of rho-kinase-induced myristoylated alanine-rich C kinase substrate (MARCKS) phosphorylation in human neuronal cells by H-1152, a novel and specific Rho-kinase inhibitor. J Neurochem 81: 9–16. doi: 10.1046/j.1471-4159.2002.00801.x
[38]  O’Farrell AM, Abrams TJ, Yuen HA, Ngai TJ, Louie SG, et al. (2003) SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood 101: 3597–3605. doi: 10.1182/blood-2002-07-2307
[39]  West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW, et al. (2005) Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A 102: 16842–16847. doi: 10.1073/pnas.0507360102
[40]  Taylor SS, Yang J, Wu J, Haste NM, Radzio-Andzelm E, et al. (2004) PKA: a portrait of protein kinase dynamics. Biochim Biophys Acta 1697: 259–269. doi: 10.1016/j.bbapap.2003.11.029

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133