[1] | Jones KL, Smith DW (1975) The fetal alcohol syndrome. Teratology 12: 1–10. doi: 10.1002/tera.1420120102
|
[2] | Sampson PD, Streissguth AP, Bookstein FL, Little RE, Clarren SK, et al. (1997) Incidence of fetal alcohol syndrome and prevalence of alcohol-related neurodevelopmental disorder. Teratology 56: 317–326.
|
[3] | National Surveys on Drug Use and Health (NSDUHs), 2011 and 2012 data (2013). Substance Abuse and Mental Health Services Administration (SAMHSA)
|
[4] | Dumas RM, Rabe A (1994) Augmented memory loss in aging mice after one embryonic exposure to alcohol. Neurotoxicol Teratol 16: 605–612. doi: 10.1016/0892-0362(94)90038-8
|
[5] | Nunez CC, Roussotte F, Sowell ER (2011) Focus on: structural and functional brain abnormalities in fetal alcohol spectrum disorders. Alcohol Res Health 34: 121–131.
|
[6] | Elliott EJ, Payne J, Morris A, Haan E, Bower C (2008) Fetal alcohol syndrome: a prospective national surveillance study. Arch Dis Child 93: 732–737. doi: 10.1136/adc.2007.120220
|
[7] | May PA, Gossage JP (2001) Estimating the prevalence of fetal alcohol syndrome. A summary. Alcohol Res Health 25: 159–167.
|
[8] | Coles CD, Platzman KA, Raskind-Hood CL, Brown RT, Falek A, et al. (1997) A comparison of children affected by prenatal alcohol exposure and attention deficit, hyperactivity disorder. Alcohol Clin Exp Res 21: 150–161. doi: 10.1111/j.1530-0277.1997.tb03743.x
|
[9] | Mattson SN, Riley EP (1998) A review of the neurobehavioral deficits in children with fetal alcohol syndrome or prenatal exposure to alcohol. Alcohol Clin Exp Res 22: 279–294. doi: 10.1111/j.1530-0277.1998.tb03651.x
|
[10] | Roebuck TM, Mattson SN, Riley EP (1998) A review of the neuroanatomical findings in children with fetal alcohol syndrome or prenatal exposure to alcohol. Alcohol Clin Exp Res 22: 339–344. doi: 10.1111/j.1530-0277.1998.tb03658.x
|
[11] | Narasimhan M, Rathinam M, Riar A, Patel D, Mummidi S, et al. (2013) Programmed cell death 4 (PDCD4): a novel player in ethanol-mediated suppression of protein translation in primary cortical neurons and developing cerebral cortex. Alcohol Clin Exp Res 37: 96–109. doi: 10.1111/j.1530-0277.2012.01850.x
|
[12] | Guerri C, Saez R, Sancho-Tello M, Martin de Aquilera E, Renau-Piqueras J (1990) Ethanol alters astrocyte development: a study of critical periods using primary cultures. Neurochem Res 15: 559–565. doi: 10.1007/bf00966217
|
[13] | Tang N, He M, O’Riordan MA, Farkas C, Buck K, et al. (2006) Ethanol inhibits L1 cell adhesion molecule activation of mitogen-activated protein kinases. J Neurochem 96: 1480–1490. doi: 10.1111/j.1471-4159.2006.03649.x
|
[14] | Anthony B, Zhou FC, Ogawa T, Goodlett CR, Ruiz J (2008) Alcohol exposure alters cell cycle and apoptotic events during early neurulation. Alcohol Alcohol 43: 261–273. doi: 10.1093/alcalc/agm166
|
[15] | Jegou S, El Ghazi F, de Lendeu PK, Marret S, Laudenbach V, et al. (2012) Prenatal alcohol exposure affects vasculature development in the neonatal brain. Ann Neurol 72: 952–960. doi: 10.1002/ana.23699
|
[16] | Schneider ML, Moore CF, Barnhart TE, Larson JA, DeJesus OT, et al. (2005) Moderate-level prenatal alcohol exposure alters striatal dopamine system function in rhesus monkeys. Alcohol Clin Exp Res 29: 1685–1697. doi: 10.1097/01.alc.0000179409.80370.25
|
[17] | Costa ET, Soto EE, Cardoso RA, Olivera DS, Valenzuela CF (2000) Acute effects of ethanol on kainate receptors in cultured hippocampal neurons. Alcohol Clin Exp Res 24: 220–225. doi: 10.1111/j.1530-0277.2000.tb04594.x
|
[18] | Guerri C (1998) Neuroanatomical and neurophysiological mechanisms involved in central nervous system dysfunctions induced by prenatal alcohol exposure. Alcohol Clin Exp Res 22: 304–312. doi: 10.1111/j.1530-0277.1998.tb03653.x
|
[19] | Henderson GI, Devi BG, Perez A, Schenker S (1995) In utero ethanol exposure elicits oxidative stress in the rat fetus. Alcohol Clin Exp Res 19: 714–720. doi: 10.1111/j.1530-0277.1995.tb01572.x
|
[20] | Kotch LE, Chen SY, Sulik KK (1995) Ethanol-induced teratogenesis: free radical damage as a possible mechanism. Teratology 52: 128–136. doi: 10.1002/tera.1420520304
|
[21] | Handa RK, DeJoseph MR, Singh LD, Hawkins RA, Singh SP (2000) Glucose transporters and glucose utilization in rat brain after acute ethanol administration. Metab Brain Dis 15: 211–222. doi: 10.1007/bf02674530
|
[22] | Volkow ND, Hitzemann R, Wolf AP, Logan J, Fowler JS, et al. (1990) Acute effects of ethanol on regional brain glucose metabolism and transport. Psychiatry Res 35: 39–48. doi: 10.1016/0925-4927(90)90007-s
|
[23] | Ke Z, Wang X, Liu Y, Fan Z, Chen G, et al. (2011) Ethanol induces endoplasmic reticulum stress in the developing brain. Alcohol Clin Exp Res 35: 1574–1583.
|
[24] | Luo J, Miller MW (1998) Growth factor-mediated neural proliferation: target of ethanol toxicity. Brain Res Brain Res Rev 27: 157–167. doi: 10.1016/s0165-0173(98)00009-5
|
[25] | Yamada Y, Nagase T, Nagase M, Koshima I (2005) Gene expression changes of sonic hedgehog signaling cascade in a mouse embryonic model of fetal alcohol syndrome. J Craniofac Surg 16: 1055–1061 discussion 1062–1053.
|
[26] | Mason S, Anthony B, Lai X, Ringham HN, Wang M, et al. (2012) Ethanol exposure alters protein expression in a mouse model of fetal alcohol spectrum disorders. Int J Proteomics 2012: 867141. doi: 10.1155/2012/867141
|
[27] | Suzuki C, Garces RG, Edmonds KA, Hiller S, Hyberts SG, et al. (2008) PDCD4 inhibits translation initiation by binding to eIF4A using both its MA3 domains. Proc Natl Acad Sci U S A 105: 3274–3279. doi: 10.1073/pnas.0712235105
|
[28] | Yang HS, Jansen AP, Nair R, Shibahara K, Verma AK, et al. (2001) A novel transformation suppressor, Pdcd4, inhibits AP-1 transactivation but not NF-kappaB or ODC transactivation. Oncogene 20: 669–676. doi: 10.1038/sj.onc.1204137
|
[29] | Shiota M, Izumi H, Tanimoto A, Takahashi M, Miyamoto N, et al. (2009) Programmed cell death protein 4 down-regulates Y-box binding protein-1 expression via a direct interaction with Twist1 to suppress cancer cell growth. Cancer Res 69: 3148–3156. doi: 10.1158/0008-5472.can-08-2334
|
[30] | Goke R, Barth P, Schmidt A, Samans B, Lankat-Buttgereit B (2004) Programmed cell death protein 4 suppresses CDK1/cdc2 via induction of p21(Waf1/Cip1). Am J Physiol Cell Physiol 287: C1541–1546. doi: 10.1152/ajpcell.00025.2004
|
[31] | Matsuhashi S, Narisawa Y, Ozaki I, Mizuta T (2007) Expression patterns of programmed cell death 4 protein in normal human skin and some representative skin lesions. Exp Dermatol 16: 179–184. doi: 10.1111/j.1600-0625.2006.00531.x
|
[32] | Cash AC, Andrews J (2012) Fine scale analysis of gene expression in Drosophila melanogaster gonads reveals Programmed cell death 4 promotes the differentiation of female germline stem cells. BMC Dev Biol 12: 4. doi: 10.1186/1471-213x-12-4
|
[33] | Shen R, Weng C, Yu J, Xie T (2009) eIF4A controls germline stem cell self-renewal by directly inhibiting BAM function in the Drosophila ovary. Proc Natl Acad Sci U S A 106: 11623–11628. doi: 10.1073/pnas.0903325106
|
[34] | Luo J (2009) GSK3beta in ethanol neurotoxicity. Mol Neurobiol 40: 108–121. doi: 10.1007/s12035-009-8075-y
|
[35] | Hur EM, Zhou FQ (2010) GSK3 signalling in neural development. Nat Rev Neurosci 11: 539–551. doi: 10.1038/nrn2870
|
[36] | Xu J, Yeon JE, Chang H, Tison G, Chen GJ, et al. (2003) Ethanol impairs insulin-stimulated neuronal survival in the developing brain: role of PTEN phosphatase. J Biol Chem 278: 26929–26937. doi: 10.1074/jbc.m300401200
|
[37] | Carter JJ, Tong M, Silbermann E, Lahousse SA, Ding FF, et al. (2008) Ethanol impaired neuronal migration is associated with reduced aspartyl-asparaginyl-beta-hydroxylase expression. Acta Neuropathol 116: 303–315. doi: 10.1007/s00401-008-0377-z
|
[38] | Chen G, Bower KA, Xu M, Ding M, Shi X, et al. (2009) Cyanidin-3-glucoside reverses ethanol-induced inhibition of neurite outgrowth: role of glycogen synthase kinase 3 Beta. Neurotox Res 15: 321–331. doi: 10.1007/s12640-009-9036-y
|
[39] | Munoz A, Wrighton C, Seliger B, Bernal J, Beug H (1993) Thyroid hormone receptor/c-erbA: control of commitment and differentiation in the neuronal/chromaffin progenitor line PC12. J Cell Biol 121: 423–438. doi: 10.1083/jcb.121.2.423
|
[40] | Cusso R, Vernet M, Cadefau J, Urbano-Marquez A (1989) Effects of ethanol and acetaldehyde on the enzymes of glycogen metabolism. Alcohol Alcohol 24: 291–297.
|
[41] | Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70: 687–702. doi: 10.1016/j.neuron.2011.05.001
|
[42] | Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132: 645–660. doi: 10.1016/j.cell.2008.01.033
|
[43] | Cerezo-Guisado MI, Garcia-Roman N, Garcia-Marin LJ, Alvarez-Barrientos A, Bragado MJ, et al. (2007) Lovastatin inhibits the extracellular-signal-regulated kinase pathway in immortalized rat brain neuroblasts. Biochem J 401: 175–183. doi: 10.1042/bj20060731
|
[44] | Miller MW, Nowakowski RS (1991) Effect of prenatal exposure to ethanol on the cell cycle kinetics and growth fraction in the proliferative zones of fetal rat cerebral cortex. Alcohol Clin Exp Res 15: 229–232. doi: 10.1111/j.1530-0277.1991.tb01861.x
|
[45] | Kadonaga JT (2004) Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell 116: 247–257. doi: 10.1016/s0092-8674(03)01078-x
|
[46] | Hanlon SE, Lieb JD (2004) Progress and challenges in profiling the dynamics of chromatin and transcription factor binding with DNA microarrays. Curr Opin Genet Dev 14: 697–705. doi: 10.1016/j.gde.2004.09.008
|
[47] | Calkhoven CF, Muller C, Leutz A (2002) Translational control of gene expression and disease. Trends Mol Med 8: 577–583.
|
[48] | Waby JS, Bingle CD, Corfe BM (2008) Post-translational control of sp-family transcription factors. Curr Genomics 9: 301–311. doi: 10.2174/138920208785133244
|
[49] | Mata J, Marguerat S, Bahler J (2005) Post-transcriptional control of gene expression: a genome-wide perspective. Trends Biochem Sci 30: 506–514. doi: 10.1016/j.tibs.2005.07.005
|
[50] | Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, et al. (2006) S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 314: 467–471.
|
[51] | Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, et al. (2008) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283: 1026–1033. doi: 10.1074/jbc.m707224200
|
[52] | Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, et al. (2008) MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27: 4373–4379. doi: 10.1038/onc.2008.72
|
[53] | Goke A, Goke R, Knolle A, Trusheim H, Schmidt H, et al. (2002) DUG is a novel homologue of translation initiation factor 4G that binds eIF4A. Biochem Biophys Res Commun 297: 78–82. doi: 10.1016/s0006-291x(02)02129-0
|
[54] | Smale ST (1997) Transcription initiation from TATA-less promoters within eukaryotic protein-coding genes. Biochim Biophys Acta 1351: 73–88. doi: 10.1016/s0167-4781(96)00206-0
|
[55] | Doble BW, Woodgett JR (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116: 1175–1186. doi: 10.1242/jcs.00384
|
[56] | Yost C, Torres M, Miller JR, Huang E, Kimelman D, et al. (1996) The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev 10: 1443–1454. doi: 10.1101/gad.10.12.1443
|
[57] | Baltzis D, Pluquet O, Papadakis AI, Kazemi S, Qu LK, et al. (2007) The eIF2alpha kinases PERK and PKR activate glycogen synthase kinase 3 to promote the proteasomal degradation of p53. J Biol Chem 282: 31675–31687. doi: 10.1074/jbc.m704491200
|
[58] | Luo J (2009) Glycogen synthase kinase 3beta (GSK3beta) in tumorigenesis and cancer chemotherapy. Cancer Lett 273: 194–200. doi: 10.1016/j.canlet.2008.05.045
|
[59] | Vangipuram SD, Lyman WD (2012) Ethanol affects differentiation-related pathways and suppresses Wnt signaling protein expression in human neural stem cells. Alcohol Clin Exp Res 36: 788–797.
|
[60] | Goodlett CR, Horn KH, Zhou FC (2005) Alcohol teratogenesis: mechanisms of damage and strategies for intervention. Exp Biol Med (Maywood) 230: 394–406.
|
[61] | Young MR, Santhanam AN, Yoshikawa N, Colburn NH (2010) Have tumor suppressor PDCD4 and its counteragent oncogenic miR-21 gone rogue? Mol Interv 10: 76–79. doi: 10.1124/mi.10.2.5
|
[62] | Rubert G, Minana R, Pascual M, Guerri C (2006) Ethanol exposure during embryogenesis decreases the radial glial progenitorpool and affects the generation of neurons and astrocytes. J Neurosci Res 84: 483–496. doi: 10.1002/jnr.20963
|
[63] | Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, et al. (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27: 2128–2136. doi: 10.1038/sj.onc.1210856
|
[64] | Yang E, van Nimwegen E, Zavolan M, Rajewsky N, Schroeder M, et al. (2003) Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes. Genome Res 13: 1863–1872.
|
[65] | Blattner C, Kannouche P, Litfin M, Bender K, Rahmsdorf HJ, et al. (2000) UV-Induced stabilization of c-fos and other short-lived mRNAs. Mol Cell Biol 20: 3616–3625. doi: 10.1128/mcb.20.10.3616-3625.2000
|
[66] | Schlichter U, Burk O, Worpenberg S, Klempnauer KH (2001) The chicken Pdcd4 gene is regulated by v-Myb. Oncogene 20: 231–239. doi: 10.1038/sj.onc.1204071
|
[67] | Leupold JH, Asangani IA, Mudduluru G, Allgayer H (2012) Promoter cloning and characterization of the human programmed cell death protein 4 (pdcd4) gene: evidence for ZBP-89 and Sp-binding motifs as essential Pdcd4 regulators. Biosci Rep 32: 281–297. doi: 10.1042/bsr20110045
|
[68] | Zhang H, Ozaki I, Mizuta T, Hamajima H, Yasutake T, et al. (2006) Involvement of programmed cell death 4 in transforming growth factor-beta1-induced apoptosis in human hepatocellular carcinoma. Oncogene 25: 6101–6112. doi: 10.1038/sj.onc.1209634
|
[69] | Afonja O, Juste D, Das S, Matsuhashi S, Samuels HH (2004) Induction of PDCD4 tumor suppressor gene expression by RAR agonists, antiestrogen and HER-2/neu antagonist in breast cancer cells. Evidence for a role in apoptosis. Oncogene 23: 8135–8145. doi: 10.1038/sj.onc.1207983
|
[70] | Orford K, Crockett C, Jensen JP, Weissman AM, Byers SW (1997) Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. J Biol Chem 272: 24735–24738. doi: 10.1074/jbc.272.40.24735
|
[71] | Deng J, Miller SA, Wang HY, Xia W, Wen Y, et al. (2002) beta-catenin interacts with and inhibits NF-kappa B in human colon and breast cancer. Cancer Cell 2: 323–334. doi: 10.1016/s1535-6108(02)00154-x
|
[72] | Wray J, Kalkan T, Gomez-Lopez S, Eckardt D, Cook A, et al. (2011) Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nat Cell Biol 13: 838–845. doi: 10.1038/ncb2267
|
[73] | Smartt HJ, Greenhough A, Ordonez-Moran P, Talero E, Cherry CA, et al. (2012) beta-catenin represses expression of the tumour suppressor 15-prostaglandin dehydrogenase in the normal intestinal epithelium and colorectal tumour cells. Gut 61: 1306–1314. doi: 10.1136/gutjnl-2011-300817
|
[74] | Seidensticker MJ, Behrens J (2000) Biochemical interactions in the wnt pathway. Biochim Biophys Acta 1495: 168–182. doi: 10.1016/s0167-4889(99)00158-5
|
[75] | Kim WY, Snider WD (2011) Functions of GSK-3 Signaling in Development of the Nervous System. Front Mol Neurosci 4: 44. doi: 10.3389/fnmol.2011.00044
|
[76] | Cohen P, Frame S (2001) The renaissance of GSK3. Nat Rev Mol Cell Biol 2: 769–776. doi: 10.1038/35096075
|
[77] | Grimes CA, Jope RS (2001) The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 65: 391–426. doi: 10.1016/s0301-0082(01)00024-7
|
[78] | Vikhreva PN, Korobko EV, Korobko IV (2012) Protein kinase GSK3beta regulates tumor suppressor Pdcd4 expression in lung cancer cells. Dokl Biochem Biophys 442: 49–51. doi: 10.1134/s1607672912010176
|