[1] | Nottebohm F, Arnold AP (1976) Sexual dimorphism in vocal control areas of the songbird brain. Science 194: 211–213. doi: 10.1126/science.959852
|
[2] | Chue J, Smith CA (2011) Sex determination and sexual differentiation in the avian model. FEBS J 278: 1027–1034. doi: 10.1111/j.1742-4658.2011.08032.x
|
[3] | Mahadevaiah SK, Odorisio T, Elliott DJ, Rattigan A, Szot M, et al. (1998) Mouse homologues of the human AZF candidate gene RBM are expressed in spermatogonia and spermatids, and map to a Y chromosome deletion interval associated with a high incidence of sperm abnormalities. Hum Mol Genet 7: 715–727. doi: 10.1093/hmg/7.4.715
|
[4] | Kashimada K, Koopman P (2010) Sry: the master switch in mammalian sex determination. Development 137: 3921–3930. doi: 10.1242/dev.048983
|
[5] | Arnold AP (2012) The end of gonad-centric sex determination in mammals. Trends Genet 28: 55–61. doi: 10.1016/j.tig.2011.10.004
|
[6] | Fridolfsson AK, Cheng H, Copeland NG, Jenkins NA, Liu HC, et al. (1998) Evolution of the avian sex chromosomes from an ancestral pair of autosomes. Proc Natl Acad Sci U S A 95: 8147–8152. doi: 10.1073/pnas.95.14.8147
|
[7] | Breedlove S, Hampson E (2002) Sexual differentiation of brain and behavior. In: Becker J, Breedlove S, Crews D, McCarthy M, eds. Behavioral endocrinology. 2nd ed. Cambridge, MA: MIT Press/Bradford Books 75–114.
|
[8] | Grisham W, Arnold AP (1995) A direct comparison of the masculinizing effects of testosterone, androstenedione, estrogen, and progesterone on the development of the zebra finch song system. J neurobiol 26: 163–170. doi: 10.1002/neu.480260202
|
[9] | Cooke B, Hegstrom CD, Villeneuve LS, Breedlove SM (1998) Sexual differentiation of the vertebrate brain: principles and mechanisms. Front Neuroendocrinol 19: 323–362. doi: 10.1006/frne.1998.0171
|
[10] | Goldman SA, Nottebohm F (1983) Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci U S A 80: 2390–2394. doi: 10.1073/pnas.80.8.2390
|
[11] | Alvarez-Buylla A, Nottebohm F (1988) Migration of young neurons in adult avian brain. Nature 335: 353–354. doi: 10.1038/335353a0
|
[12] | Kirn JR, Fishman Y, Sasportas K, Alvarez-Buylla A, Nottebohm F (1999) Fate of new neurons in adult canary high vocal center during the first 30 days after their formation. J Comp Neurol 411: 487–494. doi: 10.1002/(sici)1096-9861(19990830)411:3<487::aid-cne10>3.0.co;2-m
|
[13] | Alvarez-Buylla A, Theelen M, Nottebohm F (1990) Proliferation “hot spots” in adult avian ventricular zone reveal radial cell division. Neuron 5: 101–109. doi: 10.1016/0896-6273(90)90038-h
|
[14] | Alvarez-Buylla A, Ling CY, Yu WS (1994) Contribution of neurons born during embryonic, juvenile, and adult life to the brain of adult canaries: regional specificity and delayed birth of neurons in the song control nuclei. J Comp Neurol 347: 233–248. doi: 10.1002/cne.903470207
|
[15] | Burek MJ, Nordeen KW, Nordeen EJ (1994) Ontogeny of sex differences among newly-generated neurons of the juvenile avian brain. Brain Res Dev Brain Res 78: 57–64. doi: 10.1016/0165-3806(94)90009-4
|
[16] | Burek MJ, Nordeen KW, Nordeen EJ (1995) Estrogen promotes neuron addition to an avian song-control nucleus by regulating post-mitotic events. Brain Res Dev Brain Res 85: 220–224. doi: 10.1016/0165-3806(94)00215-l
|
[17] | Alvarez-Buylla A, Kirn JR (1997) Birth, migration, incorporation, and death of vocal control neurons in adult songbirds. J Neurobiol 33: 585–601. doi: 10.1002/(sici)1097-4695(19971105)33:5<585::aid-neu7>3.3.co;2-u
|
[18] | Scott BB, Lois C (2007) Developmental origin and identity of song system neurons born during vocal learning in songbirds. J Comp Neurol 502: 202–214. doi: 10.1002/cne.21296
|
[19] | Zeng SJ, Song KJ, Xu N, Zhang XW, Zuo MX (2007) Sex difference in cellular proliferation within the telencephalic ventricular zone of Bengalese finch. Neurosci Res 58: 207–214. doi: 10.1016/j.neures.2007.02.001
|
[20] | Rasika S, Alvarez-Buylla A, Nottebohm F (1999) BDNF mediates the effects of testosterone on the survival of new neurons in an adult brain. Neuron 22: 53–62. doi: 10.1016/s0896-6273(00)80678-9
|
[21] | Hartog TE, Dittrich F, Pieneman AW, Jansen RF, Frankl-Vilches C, et al. (2009) Brain-derived neurotrophic factor signaling in the HVC is required for testosterone-induced song of female canaries. J Neurosci 29: 15511–15519. doi: 10.1523/jneurosci.2564-09.2009
|
[22] | Louissaint A, Rao JS, Leventhal C, Goldman SA (2002) Coordinated Interaction of Neurogenesis and Angiogenesis in the Adult Songbird Brain. Neuron 34: 945–960. doi: 10.1016/s0896-6273(02)00722-5
|
[23] | Zheng GM (2002) A Checklist on the Classification and Distribution of the Birds of the World. Science Press, Beijing, 214–217.
|
[24] | Tobari Y, Nakamura KZ, Okanoya K (2005) Sex differences in the telencephalic song control circuitry in Bengalese finches (Lonchura striata var. domestica). Zool Sci 22: 1089–1094. doi: 10.2108/zsj.22.1089
|
[25] | Zeng SJ, Zhang XW, Zuo MX (2001) Sexual dimorphism of song control nucleus RA in the forebrain of song bird (Lonchura striata). Acta Zoological Sinica 47: 552–556.
|
[26] | Zeng SJ, Zhang XW, Zuo MX (2001) The mechanism of sexual difference of vocalization in Lonchura striata swinhoei Zoolog Res. 22: 51–57.
|
[27] | Peng Z, Zhang XB, Xi C, Zeng SJ, Liu N, et al. (2012) Changes in ultra-structures and electrophysiological properties in HVC of untutored and deafened Bengalese finches relation to normally reared birds: Implications for song learning. Brain Res Bull 89: 211–222. doi: 10.1016/j.brainresbull.2012.09.004
|
[28] | Mooney R, Rao M (1994) Waiting periods versus early innervation: the development of axonal connections in the zebra finch song system. J Neurosci 14: 6532–6543.
|
[29] | Gahr M, Metzdorf R (1999) The sexually dimorphic expression of androgen receptors in the song nucleus hyperstriatalis ventral pars caudale of the zebra finch develops independently of gonadal steroids. J Neurosci 19: 2628–2636.
|
[30] | Nordeen EJ, Nordeen KW (1988) Sex and regional differences in the incorporation of neurons born during song learning in zebra finches. J Neurosci 8: 2869–2874.
|
[31] | Wade J (2000) TrkB-like immunoreactivity in the song system of developing zebra finches. J Chem Neuroanat 19: 33–39. doi: 10.1016/s0891-0618(00)00051-x
|
[32] | Kálmán M, Székely AD, Csillag A (1998) Distribution of glial fibrillary acidic protein and vimentin-immunopositive elements in the developing chicken brain from hatch to adulthood. Anat Embryol 198: 213–235. doi: 10.1007/s004290050179
|
[33] | Nixdorf-Bergweiler BE, Bischof H-J (2007) A Stereotaxic Atlas Of The Brain Of The Zebra Finch,Taeniopygia Guttata. With Special Emphasis On Telencephalic Visual And Song System Nuclei in Transverse and Sagittal Sections Ed: National Center for Biotechnology Information (US).
|
[34] | Holloway CC, Clayton DF (2001) Estrogen synthesis in the male brain triggers development of the avian song control pathway in vitro. Nat Neurosci 4: 170–175.
|
[35] | DeWulf V, Bottjer SW (2002) Age and sex differences in mitotic activity within the zebra finch telencephalon. J Neurosci 22: 4080–4094.
|
[36] | DeWulf V, Bottjer SW (2005) Neurogenesis within the juvenile zebra finch telencephalic ventricular zone: a map of proliferative activity. J Comp Neurol 481: 70–83. doi: 10.1002/cne.20352
|
[37] | Akutagawa E, Konishi M (1998) Transient expression and transport of brain-derived neurotrophic factor in the male zebra finch’s song system during vocal development. Proc Natl Acad Sci USA 95: 11429–11434. doi: 10.1073/pnas.95.19.11429
|
[38] | Dittrich F, Feng Y, Metzdorf R, Gahr M (1999) Estrogen-inducible, sex-specific expression of brain-derived neurotrophic factor mRNA in a forebrain song control nucleus of the juvenile zebra finch. Proc Natl Acad Sci USA 96: 8241–8246. doi: 10.1073/pnas.96.14.8241
|
[39] | Tang YP, Wade J (2012) 17β-estra diol regulates the sexually dimorphic expression of BDNF and TrkB proteins in the song system of juvenile zebra finches. PLoS One 7: e4368. doi: 10.1371/journal.pone.0043687
|
[40] | De Carlos JA, López-Mascaraque L, Valverde F (1996) Dynamics of cell migration from the lateral ganglionic eminence in the rat. J Neurosci 16: 6146–6156.
|
[41] | Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG (1999) The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci 99: 7881–7888.
|
[42] | Wichterle H, Turnbull DH, Nery S, Fishell G, Alvarez-Buylla A (2001) In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 128: 3759–3771.
|
[43] | Cobos I, Puelles L, Martinez S (2001) The avian telencephalic subpallium originates inhibitory neurons that invade tangentially the pallium (dorsal ventricular ridge and cortical areas. Dev Biol 239: 30–45. doi: 10.1006/dbio.2001.0422
|
[44] | Balaban E, Teillet MA, Le Douarin N (1988) Application of the quail-chick chimera system to the study of brain development and behavior. Science 241: 1339–1342. doi: 10.1126/science.3413496
|
[45] | Jiang W, McMurtry J, Niedzwiecki D, Goldman SA (1998) Insulin-like growth factor-1 is a radial cell-associated neurotrophin that promotes neuronal recruitment from the adult songbird ventricular zone. J Neurobiol 36: 1–15. doi: 10.1002/(sici)1097-4695(199807)36:1<1::aid-neu1>3.0.co;2-6
|
[46] | Cobos I, Puelles L, Martinez S (2001) The avian telencephalic subpallium originates inhibitory neurons that invade tangentially the pallium (dorsal ventricular ridge and cortical areas. Dev Biol 239: 30–45. doi: 10.1006/dbio.2001.0422
|
[47] | Balaban E, Teillet MA, Le Douarin N (1988) Application of the quail-chick chimera system to the study of brain development and behavior. Science 241: 1339–1342. doi: 10.1126/science.3413496
|
[48] | Striedter GF, Marchant TA, Beydler S (1998) The “neostriatum” develops as part of the lateral pallium in birds. J Neurosci 18: 5839–5849.
|
[49] | Burek MJ, Nordeen KW, Nordeen EJ (1997) Sexually dimorphic neuron addition to an avian song-control region is not accounted for by sex differences in cell death. J Neurobiol 33: 61–71. doi: 10.1002/(sici)1097-4695(199707)33:1<61::aid-neu6>3.0.co;2-b
|
[50] | Jiang W, McMurtry J, Niedzwiecki D, Goldman SA (1998) Insulin-like growth factor-1 is a radial cell-associated neurotrophin that promotes neuronal recruitment from the adult songbird ventricular zone. J Neurobiol 36: 1–15. doi: 10.1002/(sici)1097-4695(199807)36:1<1::aid-neu1>3.0.co;2-6
|
[51] | Brown SD, Johnson F, Bottjer SW (1993) Neurogenesis in adult canary telencephalon is independent of gonadal hormone levels. J Neurosci 13: 2024–2032.
|
[52] | Ickes BR, Pham TM, Sanders LA, Albeck D, Mohammed AH, et al. (2000) Long-term environmental enrichment leads to regional increases in neurotrophin levels in rat brain. Exp Neurol 164: 45–52. doi: 10.1006/exnr.2000.7415
|
[53] | Lee J, Duan W, Mattson MP (2002) Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem 82: 1367–1375. doi: 10.1046/j.1471-4159.2002.01085.x
|
[54] | Lindholm D, Carroll P, Tzimagiorgis G, Thoenen H (1996) Autocrine-paracrine regulation of Hippocampal neuron survival by IGF-1 and the neurotrophins BDNF, NT-3 and NT-4. Eur J Neurosci 8: 1452–1460. doi: 10.1111/j.1460-9568.1996.tb01607.x
|
[55] | Linnarsson S, Willson CA, Ernfors P (2000) Cell death in regenerating populations of neurons in BDNF mutant mice. Brain Res Mol Brain Res 75: 61–69. doi: 10.1016/s0169-328x(99)00295-8
|
[56] | Hyman C, Hofer M, Barde YA, Juhasz M, Yancopoulos DY, et al. (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350: 230–232. doi: 10.1038/350230a0
|
[57] | Ghosh A, Garnahan J, Greenberg ME (1994) Requirement for BDNF in activity-dependent survival of cortical neurons. Science 263: 1618–1623. doi: 10.1126/science.7907431
|
[58] | Sohrabji F, Miranda RCG, Toran-Allerand CD (1995) Identification of a putative estrogen response element in the gene encoding brain-derived neurotrophic factor. Proc Natl Acad Sci USA 92: 11110–11114. doi: 10.1073/pnas.92.24.11110
|
[59] | Miranda R, Sohrabji F, Toran-Allerand C (1993) Neuronal colocalization of mRNAs for neurotrophins and their receptors in the developing central nervous system suggests a potential for autocrine interactions. Proc Natl Acad Sci U S A 90: 6439–6443. doi: 10.1073/pnas.90.14.6439
|
[60] | Sohrabji F, Lewis DK (2006) Estrogen–BDNF interactions: Implications for neurodegenerative diseases. Front in Neuroendocrinol 27: 404–414. doi: 10.1016/j.yfrne.2006.09.003
|
[61] | Wang Q, Zheng J (1998) cAMP-mediated regulation of neurotrophininduced collapse of nerve growth cones. J Neurosci 18: 4973–4984.
|
[62] | Wu H, Friedman WJ, Dreyfus CF (2004) Differential regulation of neurotrophin expression in basal forebrain astroctyes by neuronal signals. J Neurosci 76: 76–85. doi: 10.1002/jnr.20060
|
[63] | Chen XQ, Agate RJ, Itoh Y, Arnold AP (2005) Sexually dimorphic expression of trkB, a Z-linked gene, in early posthatch zebra finch brain. Proc Natl Acad Sci USA 102: 7730–7735. doi: 10.1073/pnas.0408350102
|
[64] | Nordeen EJ, Nordeen KW (1989) Estrogen stimulates the incorporation of new neurons into avian song nuclei duting adolescence. Brian Res Dev Brain Res 49: 27–32. doi: 10.1016/0165-3806(89)90056-4
|
[65] | Simpson HB, Vicario DS (1991) Early estrogen treatment alone causes female zebra finches to produce learned, male-like vocalizations. J neurobiol 22: 777–793. doi: 10.1002/neu.480220710
|
[66] | Adkins-Regan E, Mansukhani C, Thompson R (1994) Sexual differentiation of brain and behavior in the zebra finch: critical periods for effects of early estrogen treatment. J neurobiol 25: 865–877. doi: 10.1002/neu.480250710
|
[67] | Vellema M, Linden A, Gahr M (2010) Area-specific migration and recruitment of new neurons in the adult songbird brain J Comp Neurol. 518: 1442–1459. doi: 10.1002/cne.22281
|