Sarcomas are mesenchymal tumors showing high molecular heterogeneity, reflected at the histological level by the existence of more than fifty different subtypes. Genetic and epigenetic evidences link aberrant activation of the Wnt signaling to growth and progression of human sarcomas. This phenomenon, mainly accomplished by autocrine loop activity, is sustained by gene amplification, over-expression of Wnt ligands and co-receptors or epigenetic silencing of endogenous Wnt antagonists. We previously showed that pharmacological inhibition of Wnt signaling mediated by Axin stabilization produced in vitro and in vivo antitumor activity in glioblastoma tumors. Here, we report that targeting different sarcoma cell lines with the Wnt inhibitor/Axin stabilizer SEN461 produces a less transformed phenotype, as supported by modulation of anchorage-independent growth in vitro. At the molecular level, SEN461 treatment enhanced the stability of the scaffold protein Axin1, a key negative regulator of the Wnt signaling with tumor suppressor function, resulting in downstream effects coherent with inhibition of canonical Wnt signaling. Genetic phenocopy of small molecule Axin stabilization, through Axin1 over-expression, coherently resulted in strong impairment of soft-agar growth. Importantly, sarcoma growth inhibition through pharmacological Axin stabilization was also observed in a xenograft model in vivo in female CD-1 nude mice. Our findings suggest the usefulness of Wnt inhibitors with Axin stabilization activity as a potentialyl clinical relevant strategy for certain types of sarcomas.
Nusse R (2005) Wnt signaling in disease and in development. Cell Research 15: 28–32. doi: 10.1038/sj.cr.7290260
[3]
MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell. 17: 9–26. doi: 10.1016/j.devcel.2009.06.016
[4]
Day TF, Guo X, Garrett-Beal L, Yang Y (2005) Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev. Cell 8: 739–50. doi: 10.1016/j.devcel.2005.03.016
[5]
Hill TP, Sp?ter D, Taketo MM, Birchmeier W, Hartmann C (2005) Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev. Cell 8: 727–38. doi: 10.1016/j.devcel.2005.02.013
[6]
Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, et al. (1998) Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J. 17: 1371–84. doi: 10.1093/emboj/17.5.1371
[7]
Stamos JL, Weis WI (2013) The β-catenin destruction complex. Cold Spring Harb. Perspect. Biol. 5 (2013) a007898.
[8]
Kim SE, Huang H, Zhao M, Zhang X, Zhang A, et al. (2013) Wnt stabilization of β-catenin reveals principles for morphogen receptor-scaffold assemblies. Science 340: 867–70. doi: 10.1126/science.1232389
[9]
Arnold HK, Zhang X, Daniel CJ, Tibbitts D, Escamilla-Powers J, et al. (2009) The Axin1 scaffold protein promotes formation of a degradation complex for c-Myc. EMBO J. 28: 500–12. doi: 10.1038/emboj.2008.279
[10]
Rui Y, Xu Z, Lin S, Li Q, Rui H, et al. (2004) Axin stimulates p53 functions by activation of HIPK2 kinase through multimeric complex formation. EMBO J. 23: 4583–94. doi: 10.1038/sj.emboj.7600475
[11]
Liu W, Rui H, Wang J, Lin S, He Y, et al. (2006) Axin is a scaffold protein in TGF-beta signaling that promotes degradation of Smad7 by Arkadia. EMBO J. 25: 1646–58. doi: 10.1038/sj.emboj.7601057
[12]
Marina N, Gebhardt M, Teot L, Gorlick R (2004) Biology and therapeutic advances for pediatric osteosarcoma. Oncologist 9: 422–41. doi: 10.1634/theoncologist.9-4-422
[13]
Tabone MD, Kalifa C, Rodary C, Raquin M, Valteau-Couanet D, et al. (1994) Osteosarcoma recurrences in pediatric patients previously treated with intensive chemotherapy. J. Clin. Oncol. 12: 2614–20.
[14]
Ferguson WS, Goorin AM (2001) Current treatment of osteosarcoma. Cancer Invest. 19: 292–315. doi: 10.1081/cnv-100102557
[15]
Clark MA, Fisher C, Judson I, Thomas JM (2005) Soft tissue sarcomas in adults. N. Engl. J. Med. 353: 701–11. doi: 10.1056/nejmra041866
[16]
Wunder JS, Torsten ON, Maki RG, O’Sullivan B, Alman BA (2007) Opportunities for improving the therapeutic ratio for patients with sarcoma. The Lancet Oncology 8: 513–524. doi: 10.1016/s1470-2045(07)70169-9
[17]
Link MP, Goorin AM, Miser AW, Green AA, Pratt CB, et al. (1986) The effect of adjuvant chemotherapy on relapse free survival in patients with osteosarcoma of the extremity. N. Engl. J. Med. 314: 1600–6. doi: 10.1056/nejm198606193142502
[18]
Iwao K, Miyoshi Y, Nawa G, Yoshikawa H, Ochi T, et al. (1999) Frequent β-catenin abnormalities in bone and soft tissue tumors. Jpn. J. Cancer Res. 90: 205–9. doi: 10.1111/j.1349-7006.1999.tb00734.x
[19]
Saito T, Oda Y, Sakamoto A, Kawaguchi K, Tanaka K, et al. (2002) APC mutations in synovial sarcomas. J. Pathol. 196: 445–9. doi: 10.1002/path.1066
[20]
Vijayakumar S, Liu G, Rus IA, Yao S, Chen Y, et al. (2011) High-frequency canonical Wnt activation in multiple sarcoma subtypes drives proliferation through a TCF/β-catenin target gene, CDC25A. Cancer Cell 19: 601–612. doi: 10.1016/j.ccr.2011.03.010
[21]
Watson LA, Rahrmann EP, Moriarity BS, Choi K, Conboy CB, et al. (2013) Canonical Wnt/β-catenin Signaling Drives Human Schwann Cell Transformation, Progression, and Tumor Maintenance. Cancer Discovery 3: 674–689. doi: 10.1158/2159-8290.cd-13-0081
[22]
Gehrke I, Gandhirajan RK, Kreuzer KA (2009) targeting the WNT/betacatenin/TCF/LEF1 axis in solid and haematological cancers: Multiplicity of therapeutic options. Eur. J. Cancer 45: 2759–67. doi: 10.1016/j.ejca.2009.08.003
[23]
Wan X, Helman LJ (2007) The biology behind mTOR inhibition in sarcoma. Oncologist 12: 1007–18. doi: 10.1634/theoncologist.12-8-1007
[24]
Marklein D, Graab U, Naumann I, Yan T, Ridzewski R, et al. (2012) PI3K inhibition enhances doxorubicin-induced apoptosis in sarcoma cells. PLoS One 7: e52898. doi: 10.1371/journal.pone.0052898
[25]
Rubin EM, Guo Y, Tu K, Xie J, Zi X, et al. (2010) Wnt Inhibitory Factor 1 Decreases Tumorigenesis and Metastasis in Osteosarcoma. Mol. Cancer Ther. 9: 731–741. doi: 10.1158/1535-7163.mct-09-0147
[26]
Guo Y, Xie J, Rubin E, Tang YX, Lin F, et al. (2008) Frzb, a Secreted Wnt Antagonist, Decreases Growth and Invasiveness of Fibrosarcoma Cells Associated with Inhibition of Met Signaling. Cancer Res. 68: 3350–3360. doi: 10.1158/0008-5472.can-07-3220
[27]
Bovolenta P, Esteve P, Ruiz JM, Cisneros E, Lopez-Rios J (2008) Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. Journal of Cell Science 121: 737–746. doi: 10.1242/jcs.026096
[28]
Kawano Y, Kypta R (2003) Secreted antagonists of the Wnt signalling pathway. Journal of Cell Science 116: 2627–2634. doi: 10.1242/jcs.00623
[29]
Haydon RC, Deyrup A, Ishikawa A, Heck R, Jiang W, et al. (2002) Cytoplasmic and/or nuclear accumulation of the beta-catenin protein is a frequent event in human osteosarcoma. Int. J. Cancer 102: 338–42. doi: 10.1002/ijc.10719
[30]
Dieudonné FX, Marion A, Ha? E, Marie PJ, Modrowski D (2010) High Wnt signaling represses the proapoptotic proteoglycan syndecan-2 in osteosarcoma cells. Cancer Res. 70: 5399–5408. doi: 10.1158/0008-5472.can-10-0090
[31]
Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, et al. (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461: 614–20. doi: 10.1038/nature08356
[32]
Chen B, Dodge ME, Tang W, Lu J, Ma Z, et al. (2009) Small molecule–mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat. Chem. Biol. 5: 100–7. doi: 10.1038/nchembio.137
[33]
Stratford EW, Daffinrud J, Munthe E, Castro R, Waaler J, et al. (2013) The tankyrase-specific inhibitor JW74 affects cell cycle progression and induces apoptosis and differentiation in osteosarcoma cell lines. Cancer Medicine doi: 10.1002/cam4.170.
[34]
De Robertis A, Valensin S, Rossi M, Tunici P, Verani M, et al. (2013) Identification and characterization of a small molecule inhibitor of WNT signaling in glioblastoma cells. Mol. Cancer Ther. 12: 1180–89. doi: 10.1158/1535-7163.mct-12-1176-t
[35]
James RG, Davidson KC, Bosch KA, Biechele TL, Robin NC, et al. (2012) WIKI4, a novel inhibitor of tankyrase and Wnt/β-catenin signaling. PLoS One 7(12): e50457. doi: 10.1371/journal.pone.0050457
[36]
Leow PC, Tian Q, Ong ZY, Yang Z, Ee PL (2010) Antitumor activity of natural compounds, curcumin and PKF118–310, as Wnt/β-catenin antagonists against human osteosarcoma cells. Invest. New Drugs 28: 766–782. doi: 10.1007/s10637-009-9311-z
[37]
Guadamillas MC, Cerezo A, Del Pozo MA (2011) Overcoming anoikis-pathways to anchorage-independent growth in cancer. J. Cell Sci. 124: 3189–97. doi: 10.1242/jcs.072165
[38]
Misra RM, Bajaj MS, Kale VP (2012) Vasculogenic mimicry of HT1080 tumour cells in vivo: critical role of HIF-1α-neuropilin-1 axis. PLoS One 7: e50153. doi: 10.1371/journal.pone.0050153
[39]
Detwiller KY, Fernando NT, Segal NH, Ryeom SW, D’Amore PA, et al. (2005) Analysis of Hypoxia-Related Gene Expression in Sarcomas and Effect of Hypoxia on RNA Interference of Vascular Endothelial Cell Growth Factor A. Cancer Res. 65: 5881–5889. doi: 10.1158/0008-5472.can-04-4078
[40]
Bishop ET, Bell GT, Bloor S, Broom IJ, Hendry NF, et al. (1999) An in vitro model of angiogenesis: basic features. Angiogenesis 3: 335–44.
[41]
Greasley PJ, Bonnard C, Amati B (2000) Myc induces the nucleolin and BN51 genes: possible implications in ribosome biogenesis. Nucleic Acids Res. 28: 446–453. doi: 10.1093/nar/28.2.446
[42]
Grandori C, Cowley SM, James LP, Eisenman RN (2000) The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev. Cell. Dev. Biol. 16: 653–699.
[43]
Van de Wetering M, Sancho E, Verweij C, De Lau W, Oving I, et al. (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 2: 241–50. doi: 10.1016/s0092-8674(02)01014-0
[44]
Akiri G, Cherian MM, Vijayakumar S, Liu G, Bafico A, et al. (2009) Wnt pathway aberrations including autocrine Wnt activation occur at high frequency in human non-small-cell lung carcinoma. Oncogene 28: 2163–2172. doi: 10.1038/onc.2009.82
[45]
Finch AJ, Soucek L, Junttila MR, Swigart LB, Evan GI (2009) Acute overexpression of Myc in intestinal epithelium recapitulates some but not all the changes elicited by Wnt/beta-catenin pathway activation. Mol. Cell. Biol. 29: 5306–5315. doi: 10.1128/mcb.01745-08
[46]
Satoh S, Daigo Y, Furukawa Y, Kato T, Miwa N, et al. (2000) AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nature Genetics 24: 245–250. doi: 10.1038/73448
[47]
Salahshor S, Woodgett JR (2005) The links between axin and carcinogenesis, J. Clin. Pathol. 58: 225–236. doi: 10.1136/jcp.2003.009506
[48]
Tarkkanen M, Larramendy ML, Bohling T, Serra M, Hattinger CM, et al. (2006) Malignant fibrous histiocytoma of bone: Analysis of genomic imbalances by comparative genomic hybridisation and C-MYC expression by immunohistochemistry. Eur. J. Cancer 42: 1172–1180. doi: 10.1016/j.ejca.2006.01.035
[49]
Chen Y, Wu JJ, Huang L (2010) Nanoparticles Targeted With NGR Motif Deliver c-myc siRNA and Doxorubicin for Anticancer Therapy. Mol. Ther. 4: 828–834. doi: 10.1038/mt.2009.291
[50]
Choi SH, Wright JB, Scott AG, Cole MD (2010) Myc protein is stabilized by suppression of a novel ligase complex in cancer cells. Genes & Dev. 24: 1236–1241. doi: 10.1101/gad.1920310
[51]
Karlsson A, Giuriato S, Tang F, Fung-Weier J, Levan G, et al. (2003) Genomically complex lymphomas undergo sustained tumor regression upon MYC inactivation unless they acquire novel chromosomal translocations. Blood 7: 2797–2803. doi: 10.1182/blood-2002-10-3091