Background Different DNA aberrations processes can cause colorectal cancer (CRC). Herein, we conducted a comprehensive molecular characterization of 27 CRCs from Iranian patients. Materials and Methods Array CGH was performed. The MSI phenotype and the methylation status of 15 genes was established using MSP. The CGH data was compared to two established lists of 41 and 68 cancer genes, respectively, and to CGH data from African Americans. A maximum parsimony cladogram based on global aberrations was established. Results The number of aberrations seem to depend on the MSI status. MSI-H tumors displayed the lowest number of aberrations. MSP revealed that most markers were methylated, except RNF182 gene. P16 and MLH1 genes were primarily methylated in MSI-H tumors. Seven markers with moderate to high frequency of methylation (SYNE1, MMP2, CD109, EVL, RET, LGR and PTPRD) had very low levels of chromosomal aberrations. All chromosomes were targeted by aberrations with deletions more frequent than amplifications. The most amplified markers were CD248, ERCC6, ERGIC3, GNAS, MMP2, NF1, P2RX7, SFRS6, SLC29A1 and TBX22. Most deletions were noted for ADAM29, CHL1, CSMD3, FBXW7, GALNS, MMP2, NF1, PRKD1, SMAD4 and TP53. Aberrations targeting chromosome X were primarily amplifications in male patients and deletions in female patients. A finding similar to what we reported for African American CRC patients. Conclusion This first comprehensive analysis of CRC Iranian tumors reveals a high MSI rate. The MSI tumors displayed the lowest level of chromosomal aberrations but high frequency of methylation. The MSI-L were predominantly targeted with chromosomal instability in a way similar to the MSS tumors. The global chromosomal aberration profiles showed many similarities with other populations but also differences that might allow a better understanding of CRC's clinico-pathological specifics in this population.
References
[1]
Jemal A, Bray F, Center MM, Ferlay J, Ward E, et al. (2011) Global cancer statistics. CA Cancer J Clin 61: 69–90. doi: 10.3322/caac.20107
[2]
Seldin MF, Pasaniuc B, Price AL (2011) New approaches to disease mapping in admixed populations. Nat Rev Genet 12: 523–528. doi: 10.1038/nrg3002
[3]
Ashktorab H, Nouraie M, Hosseinkhah F, Lee E, Rotimi C, et al. (2009) A 50-year review of colorectal cancer in African Americans: implications for prevention and treatment. Dig Dis Sci 54: 1985–1990. doi: 10.1007/s10620-009-0866-5
[4]
Nouraie M, Hosseinkhah F, Brim H, Zamanifekri B, Smoot DT, et al. (2010) Clinicopathological features of colon polyps from African-Americans. Dig Dis Sci 55: 1442–1449. doi: 10.1007/s10620-010-1133-5
[5]
Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61: 759–767. doi: 10.1016/0092-8674(90)90186-i
[6]
Markowitz S (2000) DNA repair defects inactivate tumor suppressor genes and induce hereditary and sporadic colon cancers. J Clin Oncol 18: 75S–80S.
[7]
Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396: 643–649. doi: 10.1038/25292
[8]
Wang Z, Cummins JM, Shen D, Cahill DP, Jallepalli PV, et al. (2004) Three classes of genes mutated in colorectal cancers with chromosomal instability. Cancer Res 64: 2998–3001. doi: 10.1158/0008-5472.can-04-0587
[9]
Boland CR, Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology 138: 2073–2087 e2073. doi: 10.1053/j.gastro.2009.12.064
[10]
Ried T, Knutzen R, Steinbeck R, Blegen H, Schrock E, et al. (1996) Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors. Genes Chromosomes Cancer 15: 234–245. doi: 10.1002/(sici)1098-2264(199604)15:4<234::aid-gcc5>3.0.co;2-2
[11]
Alt FW, Zhang Y, Meng FL, Guo C, Schwer B (2013) Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell 152: 417–429. doi: 10.1016/j.cell.2013.01.007
[12]
Bomme L, Bardi G, Pandis N, Fenger C, Kronborg O, et al. (1994) Clonal karyotypic abnormalities in colorectal adenomas: clues to the early genetic events in the adenoma-carcinoma sequence. Genes Chromosomes Cancer 10: 190–196. doi: 10.1002/gcc.2870100307
[13]
He QJ, Zeng WF, Sham JS, Xie D, Yang XW, et al. (2003) Recurrent genetic alterations in 26 colorectal carcinomas and 21 adenomas from Chinese patients. Cancer Genet Cytogenet 144: 112–118. doi: 10.1016/s0165-4608(02)00959-7
[14]
Bardi G, Sukhikh T, Pandis N, Fenger C, Kronborg O, et al. (1995) Karyotypic characterization of colorectal adenocarcinomas. Genes Chromosomes Cancer 12: 97–109. doi: 10.1002/gcc.2870120204
[15]
Tsafrir D, Bacolod M, Selvanayagam Z, Tsafrir I, Shia J, et al. (2006) Relationship of gene expression and chromosomal abnormalities in colorectal cancer. Cancer Res 66: 2129–2137. doi: 10.1158/0008-5472.can-05-2569
[16]
Muleris M, Dutrillaux AM, Olschwang S, Salmon RJ, Dutrillaux B (1995) Predominance of normal karyotype in colorectal tumors from hereditary non-polyposis colorectal cancer patients. Genes Chromosomes Cancer 14: 223–226. doi: 10.1002/gcc.2870140312
[17]
Camps J, Armengol G, del Rey J, Lozano JJ, Vauhkonen H, et al. (2006) Genome-wide differences between microsatellite stable and unstable colorectal tumors. Carcinogenesis 27: 419–428. doi: 10.1093/carcin/bgi244
[18]
Aaltonen LA, Peltomaki P, Leach FS, Sistonen P, Pylkkanen L, et al. (1993) Clues to the pathogenesis of familial colorectal cancer. Science 260: 812–816. doi: 10.1126/science.8484121
[19]
Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363: 558–561. doi: 10.1038/363558a0
[20]
Goel A, Arnold CN, Niedzwiecki D, Chang DK, Ricciardiello L, et al. (2003) Characterization of sporadic colon cancer by patterns of genomic instability. Cancer Res 63: 1608–1614.
[21]
Tang R, Changchien CR, Wu MC, Fan CW, Liu KW, et al. (2004) Colorectal cancer without high microsatellite instability and chromosomal instability–an alternative genetic pathway to human colorectal cancer. Carcinogenesis 25: 841–846. doi: 10.1093/carcin/bgh074
[22]
Trautmann K, Terdiman JP, French AJ, Roydasgupta R, Sein N, et al. (2006) Chromosomal instability in microsatellite-unstable and stable colon cancer. Clin Cancer Res 12: 6379–6385. doi: 10.1158/1078-0432.ccr-06-1248
[23]
Lassmann S, Weis R, Makowiec F, Roth J, Danciu M, et al. (2007) Array CGH identifies distinct DNA copy number profiles of oncogenes and tumor suppressor genes in chromosomal- and microsatellite-unstable sporadic colorectal carcinomas. J Mol Med 85: 289–300. doi: 10.1007/s00109-006-0126-5
[24]
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, et al. (2013) Cancer genome landscapes. Science 339: 1546–1558. doi: 10.1126/science.1235122
[25]
Ashktorab H, Schaffer AA, Daremipouran M, Smoot DT, Lee E, et al. (2010) Distinct genetic alterations in colorectal cancer. PLoS One 5: e8879. doi: 10.1371/journal.pone.0008879
[26]
Brim H, Hasszadeh H, Schaffer AA, Yunis A, Razjouyan H, et al. (2012) Genomic Aberrations in an African American Colorectal Cancer Cohort Reveals a MSI-Specific Profile and Chromosome X Amplification in Male Patients. PLoS One In Press. doi: 10.1371/journal.pone.0040392
[27]
Kumar K, Brim H, Mokarram P, Naghibalhossaini F, Saberi-Firoozi M, et al. (2009) Distinct BRAF (V600E) and KRAS mutations in high microsatellite instability sporadic colorectal cancer in African Americans. Clin Cancer Res In press 68. doi: 10.1158/1078-0432.ccr-08-1029
[28]
Kumar K, Daremipouran M, Brim H, Mokarram P, Smoot DT, et al., editors(2009) CAN1 gene methylation profile in African Americans with colon cancer and adenoma, new candidate genes. A-617 p.
[29]
Mokarram P, Kumar K, Brim H, Naghibalhossaini F, Saberi-firoozi M, et al. (2009) Distinct high-profile methylated genes in colorectal cancer. PLoS One 4: e7012. doi: 10.1371/journal.pone.0007012
[30]
Ashktorab H, Brim H, Smoot DT (2008) Distinct CIN and MIN pattern, CAN1 gene methylation profile in African-Americans (AA) with colon cancer and adenoma. Gastroenterology 134-A617. doi: 10.1016/s0016-5085(08)62882-6
[31]
Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, et al. (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314: 268–274. doi: 10.1126/science.1133427
[32]
Ashktorab H, Smoot DT, Carethers JM, Rahmanian M, Kittles R, et al. (2003) High incidence of microsatellite instability in colorectal cancer from African Americans. Clin Cancer Res 9: 1112–1117.
[33]
Ashktorab H, Smoot DT, Farzanmehr H, Fidelia-Lambert M, Momen B, et al. (2005) Clinicopathological features and microsatellite instability (MSI) in colorectal cancers from African Americans. Int J Cancer 116: 914–919. doi: 10.1002/ijc.21062
[34]
Brim H, Mokarram P, Naghibalhossaini F, Saberi-Firoozi M, Al-Mandhari M, et al. (2008) Impact of BRAF, MLH1 on the incidence of microsatellite instability high colorectal cancer in populations based study. Mol Cancer 7: 68. doi: 10.1186/1476-4598-7-68
[35]
Abu-Asab M, Koithan M, Shaver J, Amri H (2012) Analyzing heterogeneous complexity in complementary and alternative medicine research: a systems biology solution via parsimony phylogenetics. Forsch Komplementmed 19(Suppl 1): 42–48. doi: 10.1159/000335190
[36]
Ashktorab H, Lee E, Smoot D, Brim H (2011) Epigenetic Instability via Genomic-Wide DNA Methylation and Histone Modification Profile Predicts Colorectal Adenoma and Cancer. Gastroenterology 138: 304.
[37]
Brim H, Kumar K, Nazarian J, Hathout Y, Jafarian A, et al. (2011) SLC5A8 Gene, A Transporter of Butyrate: A Gut Flora Metabolite, Is Frequently Methylated in African American Colon Adenomas. PLoS One 6: e20216. doi: 10.1371/journal.pone.0020216
[38]
Carethers JM (2011) One Colon Lumen but Two Organs. Gastroenterology doi: 10.1053/j.gastro.2011.06.029
[39]
Yu YP, Song C, Tseng G, Ren BG, LaFramboise W, et al. (2012) Genome abnormalities precede prostate cancer and predict clinical relapse. Am J Pathol 180: 2240–2248. doi: 10.1016/j.ajpath.2012.03.008
[40]
Buffart TE, Carvalho B, van Grieken NC, van Wieringen WN, Tijssen M, et al. (2012) Losses of chromosome 5q and 14q are associated with favorable clinical outcome of patients with gastric cancer. Oncologist 17: 653–662. doi: 10.1634/theoncologist.2010-0379
[41]
Kim A, Shin HC, Bae YK, Kim MK, Kang SH, et al. (2012) Multiplication of Chromosome 17 Centromere Is Associated with Prognosis in Patients with Invasive Breast Cancers Exhibiting Normal HER2 and TOP2A Status. J Breast Cancer 15: 24–33. doi: 10.4048/jbc.2012.15.1.24
[42]
Krig SR, Miller JK, Frietze S, Beckett LA, Neve RM, et al. (2010) ZNF217, a candidate breast cancer oncogene amplified at 20q13, regulates expression of the ErbB3 receptor tyrosine kinase in breast cancer cells. Oncogene 29: 5500–5510. doi: 10.1038/onc.2010.289
[43]
Graziano SL, Pfeifer AM, Testa JR, Mark GE, Johnson BE, et al. (1991) Involvement of the RAF1 locus, at band 3p25, in the 3p deletion of small-cell lung cancer. Genes Chromosomes Cancer 3: 283–293. doi: 10.1002/gcc.2870030407
[44]
Simon R, Richter J, Wagner U, Fijan A, Bruderer J, et al. (2001) High-throughput tissue microarray analysis of 3p25 (RAF1) and 8p12 (FGFR1) copy number alterations in urinary bladder cancer. Cancer Res 61: 4514–4519.
[45]
Zhao J, Wu XY, Ling XH, Lin ZY, Fu X, et al. (2013) Analysis of genetic aberrations on chromosomal region 8q21-24 identifies E2F5 as an oncogene with copy number gain in prostate cancer. Med Oncol 30: 465. doi: 10.1007/s12032-013-0465-3
[46]
Krzyminska A, Hilczer M, Hawula W, Ulanska A, Jakubowski L (2011) Large deletion in the KAL1 gene in two related patients with hypogonadotropic hypogonadism: diagnostic usefulness of cytogenetic and molecular methods. Endokrynol Pol 62: 224–229.
[47]
Derks S, Bosch LJ, Niessen HE, Moerkerk PT, van den Bosch SM, et al. (2009) Promoter CpG island hypermethylation- and H3K9me3 and H3K27me3-mediated epigenetic silencing targets the deleted in colon cancer (DCC) gene in colorectal carcinogenesis without affecting neighboring genes on chromosomal region 18q21. Carcinogenesis 30: 1041–1048. doi: 10.1093/carcin/bgp073
[48]
O'Boyle K (2003) The role of the Deleted Colon Cancer (DCC) gene in colorectal and gastric cancer. Cancer Invest 21: 484–485. doi: 10.1081/cnv-120018241
[49]
Wang J, Meza-Zepeda LA, Kresse SH, Myklebost O (2004) M-CGH: analysing microarray-based CGH experiments. BMC Bioinformatics 5: 74. doi: 10.1186/1471-2105-5-74
[50]
Ashktorab H, Rahi H, Soltani S, Daremi M, Brim H, et al.. (2013) Novel Mutation and Hypomethylation Define Distinct Biological Subgroups of altered KRAS colon tumors. AACR.
[51]
Zhang LY, Liu M, Li X, Tang H (2013) miR-490-3p modulates cell growth and epithelial to mesenchymal transition of hepatocellular carcinoma cells by targeting endoplasmic reticulum-Golgi intermediate compartment protein 3 (ERGIC3). J Biol Chem 288: 4035–4047. doi: 10.1074/jbc.m112.410506
[52]
Fleming NI, Jorissen RN, Mouradov D, Christie M, Sakthianandeswaren A, et al. (2013) SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Res 73: 725–735. doi: 10.1158/0008-5472.can-12-2706
[53]
Vasconcelos DS, da Silva FP, Quintana LG, Anselmo NP, Othman MA, et al. (2013) Numerical aberrations of chromosome 17 and TP53 in brain metastases derived from breast cancer. Genet Mol Res 12. doi: 10.4238/2013.january.4.15
[54]
Niyaz M, Turghun A, Ping ZH, Zhu Z, Sheyhedin I, et al. (2012) TP53 gene deletion in esophageal cancer tissues of patients and its clinical significance. Mol Med Rep doi: 10.3892/mmr.2012.1162
[55]
Park HD, Ko AR, Ki CS, Lee SY, Kim JW, et al. (2013) Five novel mutations of GALNS in Korean patients with mucopolysaccharidosis IVA. Am J Med Genet A 161: 509–517. doi: 10.1002/ajmg.a.35298
[56]
Shimizu A, Asakawa S, Sasaki T, Yamazaki S, Yamagata H, et al. (2003) A novel giant gene CSMD3 encoding a protein with CUB and sushi multiple domains: a candidate gene for benign adult familial myoclonic epilepsy on human chromosome 8q23.3–q24.1. Biochem Biophys Res Commun 309: 143–154. doi: 10.1016/s0006-291x(03)01555-9
[57]
Cheng Y, Jin Z, Agarwal R, Ma K, Yang J, et al. (2012) LARP7 is a potential tumor suppressor gene in gastric cancer. Lab Invest doi: 10.1038/labinvest.2012.59