Mycobacterium tuberculosis Cyclophilin A Uses Novel Signal Sequence for Secretion and Mimics Eukaryotic Cyclophilins for Interaction with Host Protein Repertoire
Cyclophilins are prolyl isomerases with multitude of functions in different cellular processes and pathological conditions. Cyclophilin A (PpiA) of Mycobacterium tuberculosis is secreted during infection in intraphagosomal niche. However, our understanding about the evolutionary origin, secretory mechanism or the interactome of M. tuberculosis PpiA is limited. This study demonstrates through phylogenetic and structural analyses that PpiA has more proximity to human cyclophilins than the prokaryotic counterparts. We report a unique N-terminal sequence (MADCDSVTNSP) present in pathogenic mycobacterial PpiA and absent in non-pathogenic strains. This sequence stretch was shown to be essential for PpiA secretion. The overexpression of full-length PpiA from M. tuberculosis in non-pathogenic Mycobacterium smegmatis resulted in PpiA secretion while truncation of the N-terminal stretch obstructed the secretion. In addition, presence of an ESX pathway substrate motif in M. tuberculosis PpiA suggested possible involvement of Type VII secretion system. Site-directed mutagenesis of key residues in this motif in full-length PpiA also hindered the secretion in M. smegmatis. Bacterial two-hybrid screens with human lung cDNA library as target were utilized to identify interaction partners of PpiA from host repertoire, and a number of substrates with functional representation in iron storage, signal transduction and immune responses were detected. The extensive host interactome coupled with the sequence and structural similarity to human cyclophilins is strongly suggestive of PpiA being deployed by M. tuberculosis as an effector mimic against the host cyclophilins.
References
[1]
Gal-Mor O, Finlay BB (2006) Pathogenicity islands: a molecular toolbox for bacterial virulence. Cell Microbiol 8: 1707–1719. doi: 10.1111/j.1462-5822.2006.00794.x
[2]
Gama JA, Abby SS, Vieira-Silva S, Dionisio F, Rocha EP (2012) Immune subversion and quorum-sensing shape the variation in infectious dose among bacterial pathogens. PLoS Pathog 8: e1002503. doi: 10.1371/journal.ppat.1002503
[3]
Orchard RC, Alto NM (2012) Mimicking GEFs: a common theme for bacterial pathogens. Cell Microbiol 14: 10–18. doi: 10.1111/j.1462-5822.2011.01703.x
[4]
Brennan PJ (2003) Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis (Edinb) 83: 91–97. doi: 10.1016/s1472-9792(02)00089-6
[5]
Jayachandran R, Scherr N, Pieters J (2012) Elimination of intracellularly residing Mycobacterium tuberculosis through targeting of host and bacterial signaling mechanisms. Expert Rev Anti Infect Ther 10: 1007–1022. doi: 10.1586/eri.12.95
[6]
Ramakrishnan L (2012) Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol 12: 352–366. doi: 10.1038/nri3211
[7]
Russell DG (2007) Who puts the tubercle in tuberculosis? Nat Rev Microbiol 5: 39–47. doi: 10.1038/nrmicro1538
[8]
Portevin D, Gagneux S, Comas I, Young D (2011) Human macrophage responses to clinical isolates from the Mycobacterium tuberculosis complex discriminate between ancient and modern lineages. PLoS Pathog 7: e1001307. doi: 10.1371/journal.ppat.1001307
[9]
Ligon LS, Hayden JD, Braunstein M (2012) The ins and outs of Mycobacterium tuberculosis protein export. Tuberculosis (Edinb) 92: 121–132. doi: 10.1016/j.tube.2011.11.005
Galat A (2003) Peptidylprolyl cis/trans isomerases (immunophilins): biological diversity--targets--functions. Curr Top Med Chem 3: 1315–1347. doi: 10.2174/1568026033451862
[12]
Lu KP, Finn G, Lee TH, Nicholson LK (2007) Prolyl cis-trans isomerization as a molecular timer. Nat Chem Biol 3: 619–629. doi: 10.1038/nchembio.2007.35
[13]
Davis TL, Walker JR, Campagna-Slater V, Finerty PJ, Paramanathan R, et al. (2010) Structural and biochemical characterization of the human cyclophilin family of peptidyl-prolyl isomerases. PLoS Biol 8: e1000439. doi: 10.1371/journal.pbio.1000439
[14]
Wang P, Heitman J (2005) The cyclophilins. Genome Biol 6: 226. doi: 10.1186/gb-2005-6-7-226
[15]
Bang H, Pecht A, Raddatz G, Scior T, Solbach W, et al. (2000) Prolyl isomerases in a minimal cell. Catalysis of protein folding by trigger factor from Mycoplasma genitalium. Eur J Biochem 267: 3270–3280. doi: 10.1046/j.1432-1327.2000.01355.x
[16]
Krücken J, Greif G, von Samson-Himmelstjerna G (2009) In silico analysis of the cyclophilin repertoire of apicomplexan parasites. Parasit Vectors 2: 27. doi: 10.1186/1756-3305-2-27
[17]
Manteca A, Pelaez AI, Zardoya R, Sanchez J (2006) Actinobacteria cyclophilins: phylogenetic relationships and description of new class- and order-specific paralogues. J Mol Evol 63: 719–732. doi: 10.1007/s00239-005-0130-3
[18]
Lee J, Kim SS (2010) Current implications of cyclophilins in human cancers. J Exp Clin Cancer Res 29: 97. doi: 10.1186/1756-9966-29-97
[19]
Takahashi K, Uchida C, Shin RW, Shimazaki K, Uchida T (2008) Prolyl isomerase, Pin1: new findings of post-translational modifications and physiological substrates in cancer, asthma and Alzheimer's disease. Cell Mol Life Sci 65: 359–375. doi: 10.1007/s00018-007-7270-0
[20]
Weldingh K, Rosenkrands I, Jacobsen S, Rasmussen PB, Elhay MJ, et al. (1998) Two-dimensional electrophoresis for analysis of Mycobacterium tuberculosis culture filtrate and purification and characterization of six novel proteins. Infect Immun 66: 3492–3500.
[21]
Mattow J, Siejak F, Hagens K, Becher D, Albrecht D, et al. (2006) Proteins unique to intraphagosomally grown Mycobacterium tuberculosis. Proteomics 6: 2485–2494. doi: 10.1002/pmic.200500547
[22]
Mitra D, Mukherjee S, Das AK (2006) Cyclosporin A binding to Mycobacterium tuberculosis peptidyl-prolyl cis-trans isomerase A--investigation by CD, FTIR and fluorescence spectroscopy. FEBS Lett 580: 6846–6860. doi: 10.1016/j.febslet.2006.11.042
[23]
Henriksson LM, Johansson P, Unge T, Mowbray SL (2004) X-ray structure of peptidyl-prolyl cis-trans isomerase A from Mycobacterium tuberculosis. Eur J Biochem 271: 4107–4113. doi: 10.1111/j.1432-1033.2004.04348.x
[24]
Wolf YI, Kondrashov AS, Koonin EV (2000) Interkingdom gene fusions. Genome Biol 1: research0013.1–0013.15. doi: 10.1186/gb-2000-1-6-research0013
[25]
Friebel A, Ilchmann H, Aepfelbacher M, Ehrbar K, Machleidt W, et al. (2001) SopE and SopE2 from Salmonella typhimurium activate different sets of RhoGTPases of the host cell. J Biol Chem 276: 34035–34040. doi: 10.1074/jbc.m100609200
[26]
Daleke MH, Ummels R, Bawono P, Heringa J, Vandenbroucke-Grauls CM, et al. (2012) General secretion signal for the mycobacterial type VII secretion pathway. Proc Natl Acad Sci U S A 109: 11342–11347. doi: 10.1073/pnas.1119453109
[27]
Wong DK, Lee BY, Horwitz MA, Gibson BW (1999) Identification of fur, aconitase, and other proteins expressed by Mycobacterium tuberculosis under conditions of low and high concentrations of iron by combined two-dimensional gel electrophoresis and mass spectrometry. Infect Immun 67: 327–336.
[28]
Deenadayalan A, Sundaramurthi JC, Raja A (2010) Immunological and proteomic analysis of preparative isoelectric focusing separated culture filtrate antigens of Mycobacterium tuberculosis. Exp Mol Pathol 88: 156–162. doi: 10.1016/j.yexmp.2009.11.008
[29]
Lu PJ, Wulf G, Zhou XZ, Davies P, Lu KP (1999) The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 399: 784–788.
[30]
Dyer MD, Murali TM, Sobral BW (2008) The landscape of human proteins interacting with viruses and other pathogens. PLoS Pathog 4: e32. doi: 10.1371/journal.ppat.0040032
[31]
Reffuveille F, Connil N, Sanguinetti M, Posteraro B, Chevalier S, et al. (2012) Involvement of peptidylprolyl cis/trans isomerases in Enterococcus faecalis virulence. Infect Immun 80: 1728–1735. doi: 10.1128/iai.06251-11
[32]
Kulkarni MM, Karafova A, Kamysz W, Schenkman S, Pelle R, et al. (2013) Secreted trypanosome cyclophilin inactivates lytic insect defense peptides and induces parasite calcineurin activation and infectivity. J Biol Chem 288: 8772–8784. doi: 10.1074/jbc.m112.421057
[33]
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948. doi: 10.1093/bioinformatics/btm404
Narayan A, Sachdeva P, Sharma K, Saini AK, Tyagi AK, et al. (2007) Serine threonine protein kinases of mycobacterial genus: phylogeny to function. Physiol Genomics 29: 66–75. doi: 10.1152/physiolgenomics.00221.2006
[36]
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739. doi: 10.1093/molbev/msr121
[37]
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, et al. (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25: 1605–1612. doi: 10.1002/jcc.20084
[38]
Arora G, Sajid A, Gupta M, Bhaduri A, Kumar P, et al. (2010) Understanding the role of PknJ in Mycobacterium tuberculosis: biochemical characterization and identification of novel substrate pyruvate kinase A. PLoS One 5: e10772. doi: 10.1371/journal.pone.0010772
[39]
Gupta M, Sajid A, Arora G, Tandon V, Singh Y (2009) Forkhead-associated domain-containing protein Rv0019c and polyketide-associated protein PapA5, from substrates of serine/threonine protein kinase PknB to interacting proteins of Mycobacterium tuberculosis. J Biol Chem 284: 34723–34734. doi: 10.1074/jbc.m109.058834
[40]
Deol P, Vohra R, Saini AK, Singh A, Chandra H, et al. (2005) Role of Mycobacterium tuberculosis Ser/Thr kinase PknF: implications in glucose transport and cell division. J Bacteriol 187: 3415–3420. doi: 10.1128/jb.187.10.3415-3420.2005
[41]
Kumar K, Tharad M, Ganapathy S, Ram G, Narayan A, et al. (2009) Phenylalanine-rich peptides potently bind ESAT6, a virulence determinant of Mycobacterium tuberculosis, and concurrently affect the pathogen's growth. PLoS One 4: e7615. doi: 10.1371/journal.pone.0007615