全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Genetic Consequences of Forest Fragmentation for a Highly Specialized Arboreal Mammal - the Edible Dormouse

DOI: 10.1371/journal.pone.0088092

Full-Text   Cite this paper   Add to My Lib

Abstract:

Habitat loss and fragmentation represent the most serious extinction threats for many species and have been demonstrated to be especially detrimental for mammals. Particularly, highly specialized species with low dispersal abilities will encounter a high risk of extinction in fragmented landscapes. Here we studied the edible dormouse (Glis glis), a small arboreal mammal that is distributed throughout Central Europe, where forests are mostly fragmented at different spatial scales. The aim of this study was to investigate the effect of habitat fragmentation on genetic population structures using the example of edible dormouse populations inhabiting forest fragments in south western Germany. We genotyped 380 adult individuals captured between 2001 and 2009 in four different forest fragments and one large continuous forest using 14 species-specific microsatellites. We hypothesised, that populations in small forest patches have a lower genetic diversity and are more isolated compared to populations living in continuous forests. In accordance with our expectations we found that dormice inhabiting forest fragments were isolated from each other. Furthermore, their genetic population structure was more unstable over the study period than in the large continuous forest. Even though we could not detect lower genetic variability within individuals inhabiting forest fragments, strong genetic isolation and an overall high risk to mate with close relatives might be precursors to a reduced genetic variability and the onset of inbreeding depression. Results of this study highlight that connectivity among habitat fragments can already be strongly hampered before genetic erosion within small and isolated populations becomes evident.

References

[1]  Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, et al. (2008) The status of the world's land and marine mammals: diversity, threat, and knowledge. Science 322: 225–230.
[2]  Wade T, Riitters K, Wickham J, Jones K (2003) Distribution and causes of global forest fragmentation. Conserv Ecol 7: 7.
[3]  Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81: 117–142. doi: 10.1017/s1464793105006949
[4]  Pertoldi C, Bach L, Barker J, Lundberg P, Loeschcke V (2007) The consequences of the variance-mean rescaling effect on effective population size. Oikos 116: 769–774. doi: 10.1111/j.2007.0030-1299.15672.x
[5]  Lancaster ML, Taylor AC, Cooper SJB, Carthew SM (2011) Limited ecological connectivity of an arboreal marsupial across a forest/plantation landscape despite apparent resilience to fragmentation. Mol Ecol 20: 2258–2271. doi: 10.1111/j.1365-294x.2011.05072.x
[6]  Taylor AC, Walker FM, Goldingay RL, Ball T, van der Ree R (2011) Degree of landscape fragmentation influences genetic isolation among populations of a gliding mammal. PLoS ONE 6: e26651. doi: 10.1371/journal.pone.0026651
[7]  Bijlsma R, Loeschcke V (2012) Genetic erosion impedes adaptive responses to stressful environments. Evol Appl 5: 117–129. doi: 10.1111/j.1752-4571.2011.00214.x
[8]  Schlund W (2005) Siebenschl?fer Glis glis (Linnaeus, 1766). In: Braun M, Dieterlen F, editors. Die S?ugetiere Baden-Württembergs. Stuttgart: Ulmer GmbH & Co. pp. 199–210.
[9]  Mortelliti A, Amori G, Capizzi D, Rondinini C, Boitani L (2010) Experimental design and taxonomic scope of fragmentation studies on European mammals: current status and future priorities. Mammal Review 40: 125–154. doi: 10.1111/j.1365-2907.2009.00157.x
[10]  Bieber C (1998) Population dynamics, sexual activity, and reproduction failure in the fat dormouse (Myoxus glis). J Zool Lond 244: 223–229. doi: 10.1017/s0952836998002076
[11]  Pilastro A, Tavecchia G, Marin G (2003) Long living and reproduction skipping in the fat dormouse. Ecology 84: 1784–1792. doi: 10.1890/0012-9658(2003)084[1784:llarsi]2.0.co;2
[12]  Fietz J, Kager T, Schauer S (2009) Is energy supply the trigger for reproductive activity in male edible dormice (Glis glis)? J Comp Physiol B 179: 829–837. doi: 10.1007/s00360-009-0364-2
[13]  Fietz J, Pflug M, Schlund W, Tataruch F (2005) Influences of the feeding ecology on body mass and possible implications for reproduction in the edible dormouse (Glis glis). J Comp Physiol B 175: 45–55. doi: 10.1007/s00360-004-0461-1
[14]  Amori G, Cantini M, Rtoa V (1995) Distribution and conservation of Italien dormice. Hystrix 6: 331–336.
[15]  Capizzi D, Battistini M, Amori G (2003) Effects of habitat fragmentation and forest management on the distribution of the edible dormouse Glis glis. Acta Theriol 48: 359–371. doi: 10.1007/bf03194175
[16]  Mortelliti A, Amori G, Annesi F, Boitani L (2009) Testing for the relative contribution of patch neighborhood, patch internal structure, and presence of predators and competitor species in determining distribution patterns of rodents in a fragmented landscape. Can J Zool 87: 662–670. doi: 10.1139/z09-054
[17]  Mortelliti A, Santulli Sanzo G, Boitani L (2009) Species' surrogacy for conservation planning: caveats from comparing the response of three arboreal rodents to habitat loss and fragmentation. Biodivers Conserv 18: 1131–1145. doi: 10.1007/s10531-008-9477-2
[18]  Worschech K (2011) Dispersal movement of edible dormouse (Glis glis L.) between isolated small forest woodlots in the district of Altenburger Land (Germany: Thuringia). In: Ansorge H, Büchner S, editors. 8th International Dormouse Conference. St. Marienthal/Ostritz: Senckenberg Museum für Naturkunde G?rlitz. pp. 173–179.
[19]  Fietz J, Weis-Dootz T (2012) Stranded on an island: consequences of forest fragmentation for body size variations in an arboreal mammal, the edible dormouse (Glis glis). Popul Ecol 54: 313–320. doi: 10.1007/s10144-012-0310-0
[20]  Müller H (1989) Untersuchungen zum Raum-Zeit-System freilebender Siebenschlafer (Glis glis L.). Masterthesis: Saarbrücken University.
[21]  H?nel B (1991) Raumnutzung und Sozialsystem freilebender Siebenschl?fer (Glis glis L.). PhD thesis: Karlsruhe University.
[22]  Negro M, Novara C, Bertolino S, Rolando A (2013) Ski-pistes are ecological barriers to forest small mammals. Eur J Wildlife Res 59: 57–67. doi: 10.1007/s10344-012-0647-x
[23]  Bieber C (1995) Dispersal behaviour of the Edible Dormouse (Myoxus glis L.) in a fragmented landscape in Central Germany. Hystrix 6: 257–269.
[24]  Koprowski JL (2005) The response of tree squirrels to fragmentation: a review and synthesis. Anim Conserv 8: 369–376. doi: 10.1017/s1367943005002416
[25]  Vietinghoff-Riesch A (1960) Der Siebenschl?fer (Glis glis L.); Müller-Using, editor. Jena: Gustav Fischer.
[26]  Lebl K, Bieber C, Adamik P, Fietz J, Morris P, et al. (2011) Survival rates in a small hibernator, the edible dormouse: A comparison across Europe. Ecography 34: 683–692. doi: 10.1111/j.1600-0587.2010.06691.x
[27]  Fietz J, Schlund W, Dausmann KH, Regelmann M, Heldmaier G (2004) Energetic constraints on sexual activity in the male edible dormouse (Glis glis). Oecologia 138: 202–209. doi: 10.1007/s00442-003-1423-0
[28]  Fietz J, Klose SM, Kalko EKV (2010) Behavioural and physiological consequences of male reproductive trade-offs in edible dormice (Glis glis). Naturwissenschaften 97: 883–890. doi: 10.1007/s00114-010-0704-9
[29]  Ruf T, Fietz J, Schlund W, Bieber C (2006) High survival in poor years: Life history tactics adapted to mast seeding in the edible dormouse. Ecology 87: 372–381. doi: 10.1890/05-0672
[30]  Schlund W, Scharfe F, Strauss MJ, Burkhardt JF (1997) Habitat fidelity and habitat utilization of an arboreal mammal (Myoxus glis) in two different forests. Z S?ugetierkd 62: 158–171.
[31]  Schlumpberger O (2010) Barrierewirkung von anthropogenen und natürlichen Strukturen auf den Siebenschl?fer (Glis glis). Masterthesis: University of Ulm.
[32]  Segelbacher G, Tomiuk J, Heinz T, Kuhn J, Weis-Dootz T, et al. (2010) Isolation of di- and tetranucleotide microsatellite loci in the edible dormouse (Glis glis). In: Aurelle D, Baker AJ, Bottin L, et al. Molecular ecology resources primer development consortium. Mol Ecol Resour 10: 751–754.
[33]  Dabert M, Jarmolowski A, Jurczyszyn M (2009) New polymorphic microsatellite loci developed and characterized from edible dormouse (Glis glis). Conserv Genet 10: 2029–2031. doi: 10.1007/s10592-009-9886-0
[34]  Rousset F (2008) Genepop'007: A complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8: 103–106. doi: 10.1111/j.1471-8286.2007.01931.x
[35]  Goudet J (1995) Fstat version 1.2. A computer program to calculate F-statistics. J Hered 86: 485–486.
[36]  Goudet J (2001) Fstat, a program to estimate and test gene diversities and Fixation indices version 2.9.3. http//wwwunilch/izea/softwares/fstathtml (updated from Goudet1995) 485–486.
[37]  El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic of Morocco. Theor Appl Genet 92: 832–839. doi: 10.1007/bf00221895
[38]  Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10: 564–567. doi: 10.1111/j.1755-0998.2010.02847.x
[39]  Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164: 1567–1587.
[40]  Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959.
[41]  Hubisz M, Falush D, Stephens M, Pritchard J (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9: 1322–1332. doi: 10.1111/j.1755-0998.2009.02591.x
[42]  Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14: 2611–2620. doi: 10.1111/j.1365-294x.2005.02553.x
[43]  Nei M (1987) Molecular Evolutionary Genetics. New York, USA: Columbia University Press. 283–292 p.
[44]  Tomiuk J, Guldbrandtsen B, Loeschcke V (2009) Genetic similarity of polyploids: a new version of the computer program POPDIST (version 1.2.0) considers intraspecific genetic differentiation. Mol Ecol Resour 9: 1364–1368. doi: 10.1111/j.1755-0998.2009.02623.x
[45]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739. doi: 10.1093/molbev/msr121
[46]  Sokal R, Michener C (1958) A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin 38: 1409–1438.
[47]  Kalinowski ST (2009) How well do evolutionary trees describe genetic relationships among populations. Heredity 102: 506–513. doi: 10.1038/hdy.2008.136
[48]  Frankham R, Ballou J (2002) Introduction to Conservation Genetics. Cambridge: Cambridge University Press.
[49]  H?glund J (2009) Evolutionary Conservation Genetics. Oxford: Oxford University Press.
[50]  Strand TM, Segelbacher G, Quintela M, Xiao L, Axelsson T, et al. (2012) Can balancing selection on MHC loci counteract genetic drift in small fragmented populations of black grouse? Ecol Evol 2: 341–353. doi: 10.1002/ece3.86
[51]  La Haye M, Neumann K, Koelewijn H (2012) Strong decline of gene diversity in local populations of the highly endangered Common hamster (Cricetus cricetus) in the western part of its European range. Conserv Genet 13: 311–322. doi: 10.1007/s10592-011-0278-x
[52]  Huerner H, Martin JF, Ribas A, Arrizabalaga A, Michaux JR (2009) Isolation, characterization and PCR multiplexing of polymorphic microsatellite markers in the edible dormouse, Glis glis. Mol Ecol Resour 9: 885–887. doi: 10.1111/j.1755-0998.2008.02365.x
[53]  Hale ML, Lurz PWW, Shirley MDF, Rushton S, Fuller RM, et al. (2001) Impact of landscape management on the genetic structure of red squirrel populations. Science 293: 2246–2248. doi: 10.1126/science.1062574
[54]  Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19: 3038–3051. doi: 10.1111/j.1365-294x.2010.04688.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133