全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Corticotropin-Releasing Factor Facilitates Epileptiform Activity in the Entorhinal Cortex: Roles of CRF2 Receptors and PKA Pathway

DOI: 10.1371/journal.pone.0088109

Full-Text   Cite this paper   Add to My Lib

Abstract:

Whereas corticotropin-releasing factor (CRF) has been considered as the most potent epileptogenic neuropeptide in the brain, its action site and underlying mechanisms in epilepsy have not been determined. Here, we found that the entorhinal cortex (EC) expresses high level of CRF and CRF2 receptors without expression of CRF1 receptors. Bath application of CRF concentration-dependently increased the frequency of picrotoxin (PTX)-induced epileptiform activity recorded from layer III of the EC in entorhinal slices although CRF alone did not elicit epileptiform activity. CRF facilitated the induction of epileptiform activity in the presence of subthreshold concentration of PTX which normally would not elicit epileptiform activity. Bath application of the inhibitor for CRF-binding proteins, CRF6-33, also increased the frequency of PTX-induced epileptiform activity suggesting that endogenously released CRF is involved in epileptogenesis. CRF-induced facilitation of epileptiform activity was mediated via CRF2 receptors because pharmacological antagonism and knockout of CRF2 receptors blocked the facilitatory effects of CRF on epileptiform activity. Application of the adenylyl cyclase (AC) inhibitors blocked CRF-induced facilitation of epileptiform activity and elevation of intracellular cyclic AMP (cAMP) level by application of the AC activators or phosphodiesterase inhibitor increased the frequency of PTX-induced epileptiform activity, demonstrating that CRF-induced increases in epileptiform activity are mediated by an increase in intracellular cAMP. However, application of selective protein kinase A (PKA) inhibitors reduced, not completely blocked CRF-induced enhancement of epileptiform activity suggesting that PKA is only partially required. Our results provide a novel cellular and molecular mechanism whereby CRF modulates epilepsy.

References

[1]  Cha CI, Foote SL (1988) Corticotropin-releasing factor in olivocerebellar climbing-fiber system of monkey (Saimiri sciureus and Macaca fascicularis): parasagittal and regional organization visualized by immunohistochemistry. J Neurosci 8: 4121–4137.
[2]  Bassett JL, Shipley MT, Foote SL (1992) Localization of corticotropin-releasing factor-like immunoreactivity in monkey olfactory bulb and secondary olfactory areas. J Comp Neurol 316: 348–362. doi: 10.1002/cne.903160306
[3]  Park SK, Choi DI, Hwang IK, An SJ, Suh JG, et al. (2003) The differential expression of corticotropin releasing factor and its binding protein in the gerbil hippocampal complex following seizure. Neurochem Int 42: 57–65. doi: 10.1016/s0197-0186(02)00060-8
[4]  Bassett JL, Foote SL (1992) Distribution of corticotropin-releasing factor-like immunoreactivity in squirrel monkey (Saimiri sciureus) amygdala. J Comp Neurol 323: 91–102. doi: 10.1002/cne.903230108
[5]  Yan XX, Toth Z, Schultz L, Ribak CE, Baram TZ (1998) Corticotropin-releasing hormone (CRH)-containing neurons in the immature rat hippocampal formation: light and electron microscopic features and colocalization with glutamate decarboxylase and parvalbumin. Hippocampus 8: 231–243. doi: 10.1002/(sici)1098-1063(1998)8:3<231::aid-hipo6>3.0.co;2-m
[6]  Valentino RJ, Rudoy C, Saunders A, Liu XB, Van Bockstaele EJ (2001) Corticotropin-releasing factor is preferentially colocalized with excitatory rather than inhibitory amino acids in axon terminals in the peri-locus coeruleus region. Neuroscience 106: 375–384. doi: 10.1016/s0306-4522(01)00279-2
[7]  Cain ST, Owens MJ, Nemeroff CB (1991) Subcellular distribution of corticotropin-releasing-factor-like immunoreactivity in rat central nervous system. Neuroendocrinology 54: 36–41. doi: 10.1159/000125848
[8]  Jahn O, Radulovic J, Stiedl O, Tezval H, Eckart K, et al. (2005) Corticotropin-releasing factor binding protein–a ligand trap? Mini Rev Med Chem 5: 953–960. doi: 10.2174/138955705774329500
[9]  De Souza EB, Insel TR, Perrin MH, Rivier J, Vale WW, et al. (1985) Corticotropin-releasing factor receptors are widely distributed within the rat central nervous system: an autoradiographic study. J Neurosci 5: 3189–3203.
[10]  Primus RJ, Yevich E, Baltazar C, Gallager DW (1997) Autoradiographic localization of CRF1 and CRF2 binding sites in adult rat brain. Neuropsychopharmacology 17: 308–316. doi: 10.1016/s0893-133x(97)00071-7
[11]  Rominger DH, Rominger CM, Fitzgerald LW, Grzanna R, Largent BL, et al. (1998) Characterization of [125I]sauvagine binding to CRH2 receptors: membrane homogenate and autoradiographic studies. J Pharmacol Exp Ther 286: 459–468.
[12]  Chalmers DT, Lovenberg TW, De Souza EB (1995) Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J Neurosci 15: 6340–6350.
[13]  Lovenberg TW, Chalmers DT, Liu C, De Souza EB (1995) CRF2 alpha and CRF2 beta receptor mRNAs are differentially distributed between the rat central nervous system and peripheral tissues. Endocrinology 136: 4139–4142. doi: 10.1210/endo.136.9.7544278
[14]  Lovenberg TW, Liaw CW, Grigoriadis DE, Clevenger W, Chalmers DT, et al. (1995) Cloning and characterization of a functionally distinct corticotropin-releasing factor receptor subtype from rat brain. Proc Natl Acad Sci U S A 92: 836–840. doi: 10.1073/pnas.92.3.836
[15]  Dautzenberg FM, Hauger RL (2002) The CRF peptide family and their receptors: yet more partners discovered. Trends Pharmacol Sci 23: 71–77. doi: 10.1016/s0165-6147(02)01946-6
[16]  Grammatopoulos DK, Chrousos GP (2002) Functional characteristics of CRH receptors and potential clinical applications of CRH-receptor antagonists. Trends Endocrinol Metab 13: 436–444. doi: 10.1016/s1043-2760(02)00670-7
[17]  Grammatopoulos DK, Randeva HS, Levine MA, Kanellopoulou KA, Hillhouse EW (2001) Rat cerebral cortex corticotropin-releasing hormone receptors: evidence for receptor coupling to multiple G-proteins. J Neurochem 76: 509–519. doi: 10.1046/j.1471-4159.2001.00067.x
[18]  Baram TZ, Hatalski CG (1998) Neuropeptide-mediated excitability: a key triggering mechanism for seizure generation in the developing brain. Trends Neurosci 21: 471–476. doi: 10.1016/s0166-2236(98)01275-2
[19]  Ehlers CL, Henriksen SJ, Wang M, Rivier J, Vale W, et al. (1983) Corticotropin releasing factor produces increases in brain excitability and convulsive seizures in rats. Brain Res 278: 332–336. doi: 10.1016/0006-8993(83)90266-4
[20]  Weiss SR, Post RM, Gold PW, Chrousos G, Sullivan TL, et al. (1986) CRF-induced seizures and behavior: interaction with amygdala kindling. Brain Res 372: 345–351. doi: 10.1016/0006-8993(86)91142-x
[21]  Marrosu F, Fratta W, Carcangiu P, Giagheddu M, Gessa GL (1988) Localized epileptiform activity induced by murine CRF in rats. Epilepsia 29: 369–373. doi: 10.1111/j.1528-1157.1988.tb03733.x
[22]  Marrosu F, Mereu G, Fratta W, Carcangiu P, Camarri F, et al. (1987) Different epileptogenic activities of murine and ovine corticotropin-releasing factor. Brain Res 408: 394–398. doi: 10.1016/0006-8993(87)90413-6
[23]  Piekut DT, Phipps B (1998) Increased corticotropin-releasing factor immunoreactivity in select brain sites following kainate elicited seizures. Brain Res 781: 100–113. doi: 10.1016/s0006-8993(97)01219-5
[24]  Smith MA, Weiss SR, Berry RL, Zhang LX, Clark M, et al. (1997) Amygdala-kindled seizures increase the expression of corticotropin-releasing factor (CRF) and CRF-binding protein in GABAergic interneurons of the dentate hilus. Brain Res 745: 248–256. doi: 10.1016/s0006-8993(96)01157-2
[25]  Greenwood RS, Fan Z, Meeker R (1997) Persistent elevation of corticotrophin releasing factor and vasopressin but not oxytocin mRNA in the rat after kindled seizures. Neurosci Lett 224: 66–70. doi: 10.1016/s0304-3940(97)13455-3
[26]  Takahashi Y, Sadamatsu M, Kanai H, Masui A, Amano S, et al. (1997) Changes of immunoreactive neuropeptide Y, somatostatin and corticotropin-releasing factor (CRF) in the brain of a novel epileptic mutant rat, Ihara's genetically epileptic rat (IGER). Brain Res 776: 255–260. doi: 10.1016/s0006-8993(97)01119-0
[27]  Jinde S, Masui A, Morinobu S, Takahashi Y, Tsunashima K, et al. (1999) Elevated neuropeptide Y and corticotropin-releasing factor in the brain of a novel epileptic mutant rat: Noda epileptic rat. Brain Res 833: 286–290. doi: 10.1016/s0006-8993(99)01510-3
[28]  Wang W, Dow KE, Fraser DD (2001) Elevated corticotropin releasing hormone/corticotropin releasing hormone-R1 expression in postmortem brain obtained from children with generalized epilepsy. Ann Neurol 50: 404–409. doi: 10.1002/ana.1138
[29]  An SJ, Park SK, Hwang IK, Kim HS, Seo MO, et al. (2003) Altered corticotropin-releasing factor (CRF) receptor immunoreactivity in the gerbil hippocampal complex following spontaneous seizure. Neurochem Int 43: 39–45. doi: 10.1016/s0197-0186(02)00195-x
[30]  Sierra-Paredes G, Sierra-Marcuno G (1996) Microperfusion of picrotoxin in the hippocampus of chronic freely moving rats through microdialysis probes: a new method of induce partial and secondary generalized seizures. J Neurosci Methods 67: 113–120. doi: 10.1016/0165-0270(96)00040-4
[31]  Fisher RS (1989) Animal models of the epilepsies. Brain Res Brain Res Rev 14: 245–278. doi: 10.1016/0165-0173(89)90003-9
[32]  Sarkisian MR (2001) Overview of the Current Animal Models for Human Seizure and Epileptic Disorders. Epilepsy Behav 2: 201–216. doi: 10.1006/ebeh.2001.0193
[33]  Deng PY, Xiao Z, Lei S (2010) Distinct modes of modulation of GABAergic transmission by Group I metabotropic glutamate receptors in rat entorhinal cortex. Hippocampus 20: 980–993. doi: 10.1002/hipo.20697
[34]  Wang S, Chen X, Kurada L, Huang Z, Lei S (2012) Activation of group II metabotropic glutamate receptors inhibits glutamatergic transmission in the rat entorhinal cortex via reduction of glutamate release probability. Cereb Cortex 22: 584–594. doi: 10.1093/cercor/bhr131
[35]  Wang S, Zhang AP, Kurada L, Matsui T, Lei S (2011) Cholecystokinin facilitates neuronal excitability in the entorhinal cortex via activation of TRPC-like channels. J Neurophysiol 106: 1515–1524. doi: 10.1152/jn.00025.2011
[36]  Xiao Z, Deng PY, Yang C, Lei S (2009) Modulation of GABAergic transmission by muscarinic receptors in the entorhinal cortex of juvenile rats. J Neurophysiol 102: 659–669. doi: 10.1152/jn.00226.2009
[37]  Deng PY, Porter JE, Shin HS, Lei S (2006) Thyrotropin-releasing hormone increases GABA release in rat hippocampus. J Physiol 577: 497–511. doi: 10.1113/jphysiol.2006.118141
[38]  Wang S, Kurada L, Cilz NI, Chen X, Xiao Z, et al. (2013) Adenosinergic depression of glutamatergic transmission in the entorhinal cortex of juvenile rats via reduction of glutamate release probability and the number of releasable vesicles. PLoS One 8: e62185. doi: 10.1371/journal.pone.0062185
[39]  Xiao Z, Deng PY, Rojanathammanee L, Yang C, Grisanti L, et al. (2009) Noradrenergic depression of neuronal excitability in the entorhinal cortex via activation of TREK-2 K+ channels. J Biol Chem 284: 10980–10991. doi: 10.1074/jbc.m806760200
[40]  Deng PY, Xiao Z, Yang C, Rojanathammanee L, Grisanti L, et al. (2009) GABA(B) receptor activation inhibits neuronal excitability and spatial learning in the entorhinal cortex by activating TREK-2 K+ channels. Neuron 63: 230–243. doi: 10.1016/j.neuron.2009.06.022
[41]  Deng PY, Lei S (2008) Serotonin increases GABA release in rat entorhinal cortex by inhibiting interneuron TASK-3 K+ channels. Mol Cell Neurosci 39: 273–284. doi: 10.1016/j.mcn.2008.07.005
[42]  Lei S, Deng PY, Porter JE, Shin HS (2007) Adrenergic facilitation of GABAergic transmission in rat entorhinal cortex. J Neurophysiol 98: 2868–2877. doi: 10.1152/jn.00679.2007
[43]  Deng PY, Xiao Z, Jha A, Ramonet D, Matsui T, et al. (2010) Cholecystokinin facilitates glutamate release by increasing the number of readily releasable vesicles and releasing probability. J Neurosci 30: 5136–5148. doi: 10.1523/jneurosci.5711-09.2010
[44]  Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254. doi: 10.1006/abio.1976.9999
[45]  Deng PY, Poudel SK, Rojanathammanee L, Porter JE, Lei S (2007) Serotonin inhibits neuronal excitability by activating two-pore domain k+ channels in the entorhinal cortex. Mol Pharmacol 72: 208–218. doi: 10.1124/mol.107.034389
[46]  Saoud CJ, Wood CE (1996) Ontogeny and molecular weight of immunoreactive arginine vasopressin and corticotropin-releasing factor in the ovine fetal hypothalamus. Peptides 17: 55–61. doi: 10.1016/0196-9781(95)02060-8
[47]  Lauber M, Clavreul C, Vaudry H, Cohen P (1984) Immunological detection of pro-corticotropin releasing factor (CRF) in rat hypothalamus and pancreatic extracts. Evidence for in vitro conversion into CRF. FEBS Lett 173: 222–226. doi: 10.1016/0014-5793(84)81051-0
[48]  Watabe T, Levidiotis ML, Oldfield B, Wintour EM (1991) Ontogeny of corticotrophin-releasing factor (CRF) in the ovine fetal hypothalamus: use of multiple CRF antibodies. J Endocrinol 129: 335–341. doi: 10.1677/joe.0.1290335
[49]  Miyata I, Shiota C, Ikeda Y, Oshida Y, Chaki S, et al. (1999) Cloning and characterization of a short variant of the corticotropin-releasing factor receptor subtype from rat amygdala. Biochem Biophys Res Commun 256: 692–696. doi: 10.1006/bbrc.1999.0392
[50]  Radulovic J, Sydow S, Spiess J (1998) Characterization of native corticotropin-releasing factor receptor type 1 (CRFR1) in the rat and mouse central nervous system. J Neurosci Res 54: 507–521. doi: 10.1002/(sici)1097-4547(19981115)54:4<507::aid-jnr8>3.0.co;2-e
[51]  Spiess J, Dautzenberg FM, Sydow S, Hauger RL, Ruhmann A, et al. (1998) Molecular Properties of the CRF Receptor. Trends Endocrinol Metab 9: 140–145. doi: 10.1016/s1043-2760(98)00037-x
[52]  Riegel AC, Williams JT (2008) CRF facilitates calcium release from intracellular stores in midbrain dopamine neurons. Neuron 57: 559–570. doi: 10.1016/j.neuron.2007.12.029
[53]  Higashima M, Ohno K, Koshino Y (2002) Cyclic AMP-mediated modulation of epileptiform afterdischarge generation in rat hippocampal slices. Brain Res 949: 157–161. doi: 10.1016/s0006-8993(02)02976-1
[54]  Vazquez-Lopez A, Sierra-Paredes G, Sierra-Marcuno G (2005) Role of cAMP-dependent protein kinase on acute picrotoxin-induced seizures. Neurochem Res 30: 613–618. doi: 10.1007/s11064-005-2748-3
[55]  Boulton CL, McCrohan CR, O'Shaughnessy CT (1993) Cyclic AMP analogues increase excitability and enhance epileptiform activity in rat neocortex in vitro. Eur J Pharmacol 236: 131–136. doi: 10.1016/0014-2999(93)90235-a
[56]  Ristori C, Cammalleri M, Martini D, Pavan B, Liu Y, et al. (2008) Involvement of the cAMP-dependent pathway in the reduction of epileptiform bursting caused by somatostatin in the mouse hippocampus. Naunyn Schmiedebergs Arch Pharmacol 378: 563–577. doi: 10.1007/s00210-008-0338-z
[57]  Ure A, Altrup U (2006) Block of spontaneous termination of paroxysmal depolarizations by forskolin (buccal ganglia, Helix pomatia). Neurosci Lett 392: 10–15. doi: 10.1016/j.neulet.2005.08.045
[58]  Yechikhov S, Morenkov E, Chulanova T, Godukhin O, Shchipakina T (2001) Involvement of cAMP- and Ca(2+)/calmodulin-dependent neuronal protein phosphorylation in mechanisms underlying genetic predisposition to audiogenic seizures in rats. Epilepsy Res 46: 15–25. doi: 10.1016/s0920-1211(01)00255-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133