全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Evidence for a Role for Interleukin-17, Th17 Cells and Iron Homeostasis in Protective Immunity against Tuberculosis in Cynomolgus Macaques

DOI: 10.1371/journal.pone.0088149

Full-Text   Cite this paper   Add to My Lib

Abstract:

Tuberculosis (TB) remains a major global public health problem. The only vaccine, BCG, gives variable protection, especially in adults, so several new vaccines are in clinical trials. There are no correlates of protective immunity to TB; therefore vaccines progress through lengthy and expensive pre-clinical assessments and human trials. Correlates of protection could act as early end-points during clinical trials, accelerating vaccine development and reducing costs. A genome-wide microarray was utilised to identify potential correlates of protection and biomarkers of disease induced post-BCG vaccination and post-Mycobacterium tuberculosis challenge in PPD-stimulated peripheral blood mononuclear cells from cynomolgus macaques where the outcome of infection was known. Gene expression post BCG-vaccination and post challenge was compared with gene expression when the animals were na?ve. Differentially expressed genes were identified using a moderated T test with Benjamini Hochberg multiple testing correction. After BCG vaccination and six weeks post-M. tuberculosis challenge, up-regulation of genes related to a Th1 and Th17 response was observed in disease controllers. At post-mortem, RT-PCR revealed an up-regulation of iron regulatory genes in animals that developed TB and down-regulation of these genes in disease controllers, indicating the ability to successfully withhold iron may be important in the control of TB disease. The induction of a balanced Th1 and Th17 response, together with expression of effector cytokines, such as IFNG, IL2, IL17, IL21 and IL22, could be used as correlates of a protective host response.

References

[1]  WHO (2011) Global tuberculosis control: WHO report 2011. World Health Organization.
[2]  Flynn J, Chan J, Triebold K, Dalton D, Stewart T, et al. (1993) An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 178: 2249–2254. doi: 10.1084/jem.178.6.2249
[3]  Gómez-Reino JJ, Carmona L, Valverde VR, Mola EM, Montero MD (2003) Treatment of rheumatoid arthritis with tumor necrosis factor inhibitors may predispose to significant increase in tuberculosis risk: A multicenter active-surveillance report. Arthritis Rheum 48: 2122–2127. doi: 10.1002/art.11137
[4]  Xing Z, Zganiacz A, Santosuosso M (2000) Role of IL-12 in macrophage activation during intracellular infection: IL-12 and mycobacteria synergistically release TNF-α and nitric oxide from macrophages via IFN-γ induction. J Leukoc Biol 68: 897–902.
[5]  Ellner JJ, Hirsch CS, Whalen CC (2000) Correlates of protective immunity to Mycobacterium tuberculosis in humans. Clin Infect Dis 30: S279–S282. doi: 10.1086/313874
[6]  Jeevan A, Bonilla DL, McMurray DN (2009) Expression of interferon-γ and tumour necrosis factor-α messenger RNA does not correlate with protection in guinea pigs challenged with virulent Mycobacterium tuberculosis by the respiratory route. Immunology 128: e296–e305. doi: 10.1111/j.1365-2567.2008.02962.x
[7]  Kagina BMN, Abel B, Scriba TJ, Hughes EJ, Keyser A, et al. (2010) Specific T cell frequency and cytokine expression profile do not correlate with protection against tuberculosis after bacillus Calmette-Guérin vaccination of newborns. Am J Respir Crit Care Med 182: 1073–1079. doi: 10.1164/rccm.201003-0334oc
[8]  Sharpe SA, McShane H, Dennis MJ, Basaraba RJ, Gleeson F, et al. (2010) Establishment of an aerosol challenge model of tuberculosis in rhesus macaques, and an evaluation of endpoints for vaccine testing. Clin Vaccine Immunol 17: 1170–1182. doi: 10.1128/cvi.00079-10
[9]  Fletcher HA (2007) Correlates of immune protection from tuberculosis. Curr Mol Med 7: 319–325. doi: 10.2174/156652407780598520
[10]  Bold TD, Ernst JD (2012) CD4+ T cell-dependent IFN-γ production by CD8+ effector T cells in Mycobacterium tuberculosis infection. J Immunol 189: 2530–2536. doi: 10.4049/jimmunol.1200994
[11]  Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, et al. (2007) IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol 8: 369–377. doi: 10.1038/ni1449
[12]  Meraviglia S, El Daker S, Dieli F, Martini F, Martino A (2011) γδ T cells cross-link innate and adaptive immunity in Mycobacterium tuberculosis infection. Clin Dev Immunol 2011.
[13]  Sada-Ovalle I, Chiba A, Gonzales A, Brenner MB, Behar SM (2008) Innate invariant NKT cells recognize Mycobacterium tuberculosis–infected macrophages, produce interferon-γ, and kill intracellular bacteria. PLoS Path 4: e1000239. doi: 10.1371/journal.ppat.1000239
[14]  Gold MC, Cerri S, Smyk-Pearson S, Cansler ME, Vogt TM, et al. (2010) Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol 8: e1000407. doi: 10.1371/journal.pbio.1000407
[15]  Aranday Cortes E, Kaveh D, Nunez-Garcia J, Hogarth PJ, Vordermeier HM (2010) Mycobacterium bovis BCG vaccination induces specific pulmonary transcriptome biosignatures in mice. PLoS ONE 5: e11319. doi: 10.1371/journal.pone.0011319
[16]  Langermans JAM, Doherty TM, Vervenne RAW, Laan Tvd, Lyashchenko K, et al. (2005) Protection of macaques against Mycobacterium tuberculosis infection by a subunit vaccine based on a fusion protein of antigen 85B and ESAT-6. Vaccine 23: 2740–2750. doi: 10.1016/j.vaccine.2004.11.051
[17]  Lin PL, Dietrich J, Tan E, Abalos RM, Burgos J, et al. (2012) The multistage vaccine H56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection. J Clin Invest 122: 303–314. doi: 10.1172/jci46252
[18]  McMurray D (2000) A non-human primate model for preclinical testing of new tuberculosis vaccines. Clin Infect Dis 30: S210–S212. doi: 10.1086/313885
[19]  Verreck FAW, Vervenne RAW, Kondova I, van Kralingen KW, Remarque EJ, et al. (2009) MVA85A boosting of BCG and an attenuated phoP deficient M. tuberculosis vaccine both show protective efficacy against tuberculosis in rhesus macaques. PLoS ONE 4: e5264. doi: 10.1371/journal.pone.0005264
[20]  Sharpe SA, Eschelbach E, Basaraba RJ, Gleeson F, Hall GA, et al. (2009) Determination of lesion volume by MRI and stereology in a macaque model of tuberculosis. Tuberculosis 89: 405–416. doi: 10.1016/j.tube.2009.09.002
[21]  Ottenhoff THM, Kaufmann SHE (2012) Vaccines against tuberculosis: Where are we and where do we need to go? PLoS Path 8: e1002607. doi: 10.1371/journal.ppat.1002607
[22]  Wallis RS, Doherty TM, Onyebujoh P, Vahedi M, Laang H, et al. (2009) Biomarkers for tuberculosis disease activity, cure, and relapse. Lancet Infect Dis 9: 162–172. doi: 10.1016/s1473-3099(09)70042-8
[23]  Gopal R, Rangel-Moreno J, Slight S, Lin Y, Nawar HF, et al. (2013) Interleukin-17-dependent CXCL13 mediates mucosal vaccine–induced immunity against tuberculosis. Mucosal Immunol doi:10.1038/mi.2012.135.
[24]  Vordermeier HM, Villarreal-Ramos B, Cockle PJ, McAulay M, Rhodes SG, et al. (2009) Viral booster vaccines improve mycobacterium bovis BCG-induced protection against bovine tuberculosis. Infect Immun 77: 3364–3373. doi: 10.1128/iai.00287-09
[25]  Okamoto Yoshida Y, Umemura M, Yahagi A, O ’Brien RL, Ikuta K, et al. (2010) Essential role of IL-17A in the formation of a mycobacterial infection-induced granuloma in the lung. J Immunol 184: 4414–4422. doi: 10.4049/jimmunol.0903332
[26]  Wozniak TM, Saunders BM, Ryan AA, Britton WJ (2010) Mycobacterium bovis BCG-specific Th17 cells confer partial protection against Mycobacterium tuberculosis infection in the absence of gamma interferon. Infect Immun 78: 4187–4194. doi: 10.1128/iai.01392-09
[27]  Desel C, Dorhoi A, Bandermann S, Grode L, Eisele B, et al. (2011) Recombinant BCG ΔureC hly+ induces superior protection over parental BCG by stimulating a balanced combination of Type 1 and Type 17 cytokine responses. J Infect Dis 204: 1573–1584. doi: 10.1093/infdis/jir592
[28]  Chen X, Zhang M, Liao M, Graner MW, Wu C, et al. (2010) Reduced Th17 response in patients with tuberculosis correlates with IL-6R expression on CD4+ T cells. Am J Respir Crit Care Med 181: 734–742. doi: 10.1164/rccm.200909-1463oc
[29]  Cowan J, Pandey S, Filion L, Angel J, Kumar A, et al. (2012) Comparison of IFNγ-, IL17- and IL22-expressing CD4 T cells, IL22-expressing granulocytes and proinflammatory cytokines during latent and active tuberculosis infection. Clin Exp Immunol 167: 317–329. doi: 10.1111/j.1365-2249.2011.04520.x
[30]  Yao C, Sakata D, Esaki Y, Li Y, Matsuoka T, et al. (2009) Prostaglandin E2-EP4 signaling promotes immune inflammation through TH1 cell differentiation and TH17 cell expansion. Nat Med 15: 633–640. doi: 10.1038/nm.1968
[31]  Boniface K, Bak-Jensen KS, Li Y, Blumenschein WM, McGeachy MJ, et al. (2009) Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. J Exp Med 206: 535–548. doi: 10.1084/jem.20082293
[32]  Khayrullina T, Yen J-H, Jing H, Ganea D (2008) In vitro differentiation of dendritic cells in the presence of prostaglandin E2 alters the IL-12/IL-23 balance and promotes differentiation of Th17 cells. J Immunol 181: 721–735. doi: 10.4049/jimmunol.181.1.721
[33]  Chizzolini C, Chicheportiche R, Alvarez M, de Rham C, Roux-Lombard P, et al. (2008) Prostaglandin E2 synergistically with interleukin-23 favors human Th17 expansion. Blood 112: 3696–3703. doi: 10.1182/blood-2008-05-155408
[34]  Cahill J, Hopper KE (1984) Immunoregulation by macrophages III prostaglandin E suppresses lymphocyte activation but not macrophage effector function during Salmonella enteritidis infection. Int J Immunopharmacol 6: 9–17. doi: 10.1016/0192-0561(84)90029-8
[35]  Murray JL, Kollmorgen GM (1983) Inhibition of lymphocyte response by prostaglandin-producing suppressor cells in patients with melanoma. J Clin Immunol 3: 268–276. doi: 10.1007/bf00915351
[36]  Tullius MV, Harmston CA, Owens CP, Chim N, Morse RP, et al. (2011) Discovery and characterization of a unique mycobacterial heme acquisition system. Proc Natl Acad Sci USA 108: 5051–5056. doi: 10.1073/pnas.1009516108
[37]  Byrd T, Horwitz MA (1989) Interferon gamma-activated human monocytes downregulate transferrin receptors and inhibit the intracellular multiplication of Legionella pneumophila by limiting the availability of iron. J Clin Invest 83: 1457–1465. doi: 10.1172/jci114038
[38]  Byrd T, Horwitz M (1993) Regulation of transferrin receptor expression and ferritin content in human mononuclear phagocytes. Coordinate upregulation by iron transferrin and downregulation by interferon gamma. J Clin Invest 91: 969–976. doi: 10.1172/jci116318
[39]  Thom RE, Elmore MJ, Williams A, Andrews SC, Drobniewski F, et al. (2012) The expression of ferritin, lactoferrin, transferrin receptor and solute carrier family 11A1 in the host response to BCG-vaccination and Mycobacterium tuberculosis challenge. Vaccine 30: 3159–3168. doi: 10.1016/j.vaccine.2012.03.008
[40]  Tree JA, Patel J, Thom RE, Elmore MJ, Sch?fer H, et al. (2010) Temporal changes in the gene signatures of BCG-vaccinated guinea pigs in response to different mycobacterial antigens. Vaccine 28: 7979–7986. doi: 10.1016/j.vaccine.2010.09.061
[41]  Tree JA, Elmore MJ, Javed S, Williams A, Marsh PD (2006) Development of a guinea pig immune response-related microarray and its use to define the host response following Mycobacterium bovis BCG vaccination. Infection and Immunity 74: 1436–1441. doi: 10.1128/iai.74.2.1436-1441.2006
[42]  Gruenheid S, Canonne-Hergaux Fo, Gauthier S, Hackam DJ, Grinstein S, et al. (1999) The iron transport protein NRAMP2 is an integral membrane glycoprotein that colocalizes with transferrin in recycling endosomes. J Exp Med 189: 831–841. doi: 10.1084/jem.189.5.831
[43]  Berry MPR, Graham CM, McNab FW, Xu Z, Bloch SAA, et al. (2011) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466: 973–977. doi: 10.1038/nature09247

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133