The possibility to analyze everyday monetary transactions is limited by the scarcity of available data, as this kind of information is usually considered highly sensitive. Present econophysics models are usually employed on presumed random networks of interacting agents, and only some macroscopic properties (e.g. the resulting wealth distribution) are compared to real-world data. In this paper, we analyze Bitcoin, which is a novel digital currency system, where the complete list of transactions is publicly available. Using this dataset, we reconstruct the network of transactions and extract the time and amount of each payment. We analyze the structure of the transaction network by measuring network characteristics over time, such as the degree distribution, degree correlations and clustering. We find that linear preferential attachment drives the growth of the network. We also study the dynamics taking place on the transaction network, i.e. the flow of money. We measure temporal patterns and the wealth accumulation. Investigating the microscopic statistics of money movement, we find that sublinear preferential attachment governs the evolution of the wealth distribution. We report a scaling law between the degree and wealth associated to individual nodes.
References
[1]
Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev. Mod. Phys. 74 (1), 47. doi: 10.1103/revmodphys.74.47
[2]
Newman MEJ (2003) The structure and function of complex networks. SIAM review 45 (2), 167–256. doi: 10.1137/s003614450342480
Pastor-Satorras R, Vespignani A (2007) Evolution and structure of the Internet: A statistical physics approach. Cambridge University Press. doi: 10.1017/cbo9780511610905
[5]
Barrat A, Barthélemy M, Vespignani A (2008) Dynamical Processes on Complex Networks. Cambridge University Press. doi: 10.1007/s10955-009-9761-x
[6]
Cohen R, Havlin S (2010) Complex Networks. Structure, Robustness and Function. Cambridge University Press. doi: 10.1017/cbo9780511780356.018
Catanzaro M, Buchanan M (2013) Network opportunity. Nature Physics, 9(3), 121–123. doi: 10.1038/nphys2570
[9]
Caldarelli G, Chessa A, Pammolli F, Gabrielli A, Puliga M (2013) Reconstructing a credit network. Nature Physics, 9(3), 125–126. doi: 10.1038/nphys2580
[10]
Bargigli L, Gallegati M (2013) Finding Communities in Credit Networks. Economics, 7. doi: 10.5018/economics-ejournal.ja.2013-17
[11]
Caldarelli G (2007) Scale-Free Networks. Oxford University Press. doi: 10.1093/acprof:oso/9780199211517.001.0001
[12]
Schweitzer F, Fagiolo G, Sornette D, Vega-Redondo F, Vespignani A, et al. (2009) Economic networks: The new challenges. science Science, 325 (5939) 422. doi: 10.1142/s0219525909002337
[13]
Palla G, Farkas I, Derényi I, Barabási A-L, Vicsek T (2004) Reverse engineering of linking preferences from network restructuring. Phys. Rev. E, 70(4), 046115. doi: 10.1103/physreve.70.046115
[14]
Nakamoto S (2008) Bitcoin: A peer-to-peer electronic cash system. Available: http://bitcoin.org/bitcoin.pdf. Accessed 2014 Jan 14.
[15]
Ron D, Shamir A (2012) Quantitative Analysis of the Full Bitcoin Transaction Graph. IACR Cryptology ePrint Archive, 2012:584. Available: http://eprint.iacr.org/2012/584. Accessed 2014 Jan 14. In: Financial Cryptography and Data Security, Springer, 2013.
[16]
Reid F, Harrigan M (2011) An Analysis of Anonymity in the Bitcoin System. arXiv 1107.4524.
[17]
Note that the name Satoshi Nakamoto is widely believed to be a psuedonym. See e.g. the Bitcoin wiki page: https://en.bitcoin.it/wiki/Satoshi_Nakam?oto. Accessed 2014 Jan 14.
[18]
Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in empirical data. SIAM Review 51 (4), 661–703. doi: 10.1137/070710111
[19]
Dorfman R (1979) Formula for the Gini Coefficient The Review of Economics and Statistics, 61 (1), 146–149. doi: 10.2307/1924845
[20]
Menche J, Valleriani A, Lipowsky R (2010) Asymptotic properties of degree-correlated scale-free networks. Phys. Rev. E, 81(4), 046103. doi: 10.1103/physreve.81.046103
Barabási A-L, Jeong H, Néda Z, Ravasz E, Schbert A, et al. (2002) Evolution of the social network of scientific collaborations. Physica A 311 590–614. doi: 10.1016/s0378-4371(02)00736-7
[23]
Newman MEJ (2001) Clustering and preferential attachment in growing networks. Phys. Rev. E 64 025102. doi: 10.1103/physreve.64.025102
[24]
Perc M (2013) Self-organization of progress across the century of physics. Scientific Reports, 3, 1720. doi: 10.1038/srep01720
Kunegis J, Blattner M, Moser C (2013) Preferential attachment in online networks: Measurement and explanations. arXiv 1303.6271.
[27]
Mislove A (2009) Online Social Networks: Measurement, Analysis, and Applications to Distributed Information Systems. PhD thesis, Rice University.
[28]
Perc M (2012) Evolution of the most common English words and phrases over the centuries. J. R. Soc. Interface, 9, 3323–3328. doi: 10.1098/rsif.2012.0491
[29]
Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286 509–512. doi: 10.1126/science.286.5439.509
[30]
Krapivsky PL, Redner S, Leyvraz F (2000) Connectivity of growing random networks. Phys. Rev. Lett., 85 (21), 4629. doi: 10.1103/physrevlett.85.4629
[31]
Dorogovtsev SN, Mendes JFF, Samukhin AN (2000) Structure of growing networks with preferential linking. Phys. Rev. Lett., 85 (21), 4633. doi: 10.1103/physrevlett.85.4633
[32]
Dorogovtsev SN, Mendes JFF (2000) Evolution of networks with aging of sites. phPhys. Rev. E, 62 (2), 1842. doi: 10.1103/physreve.62.1842
[33]
Vázquez A (2003) Growing network with local rules: Preferential attachment, clustering hierarchy, and degree correlations. Phys. Rev. E, 67 (5), 056104. doi: 10.1103/physreve.67.056104
[34]
Vázquez A, Oliveira JG, Dezs? Z, Goh K, Kondor I, et al. (2006) Modeling bursts and heavy tails in human dynamics. Phys. Rev. E, 73, 036127. doi: 10.1103/physreve.73.036127
[35]
Jo H, Karsai M, Kertész J, Kaski K (2012) Circadian pattern and burstiness in mobile phone communication. New J. Phys., 14, 013055. doi: 10.1088/1367-2630/14/1/013055
[36]
Song C, Qu Z, Blumm N, Barabási A-L (2010) Limits of predictability in human mobility. Science, 327, 1018–21. doi: 10.1126/science.1177170
[37]
Lambiotte R, Blondel VD, Kerchove C, Huens E, Prieur C, et al. (2008) Geographical dispersal of mobile communication networks. Physica A, 387 (21), 5317–5325. doi: 10.1016/j.physa.2008.05.014
[38]
Barabási A-L (2005) The origin of bursts and heavy tails in human dynamics. Nature, 435 (7039), 207–211. doi: 10.1038/nature03459
[39]
Malmgren RD, Stouffer DB, Motter AE, Amaral LA (2008) A Poissonian explanation for heavy tails in e-mail communication. PNAS, 105 (47), 18153–18158. doi: 10.1073/pnas.0800332105
Ning D, You-Gui W (2007) Power-law tail in the Chinese wealth distribution. Chinese Physics Letters, 24 (8), 2434. doi: 10.1088/0256-307x/24/8/076
[43]
Klass OS, Biham O, Levy M, Malcai O, Solomon S (2006) The Forbes 400, the Pareto power-law and efficient markets. Eur. Phys. J. B, 55 (2), 143–147. doi: 10.1140/epjb/e2006-00396-1
[44]
Simon HA (1955) On a class of skew distribution functions. Biometrika, 42 (3/4) 425–440. doi: 10.1093/biomet/42.3-4.425
[45]
“For whosoever hath, to him shall be given, and he shall have more abundance: but whosoever hath not, from him shall be taken away even that he hath.”. The Bible, Matthew 13:12, King James translation. doi: 10.1016/0732-118x(85)90052-2
[46]
Ispolatov S, Krapivsky PL, Redner S (1998) Wealth Distributions in Asset Exchange Models. Eur. Phys. J. B, 2 (2), 267–276. doi: 10.1007/s100510050249
[47]
Garlaschelli D, Battiston S, Castri M, Servedio VDP, Caldarelli G (2005) The scale-free topology of market investments. Physica A, 350, 491–499. doi: 10.1016/j.physa.2004.11.040
[48]
Tseng J, Li S, Wang S (2010) Experimental evidence for the interplay between individual wealth and transaction network. Eur. Phys. J. B, 73 69–74. doi: 10.1140/epjb/e2009-00424-8
[49]
“Most Bitcoin software and websites will help with this by generating a brand new address each time you perform a transaction.”. Available (Bitcoin wiki pages): https://en.bitcoin.it/wiki/Address. Accessed 2014 Jan 14.
[50]
Bitcoin website. Available: http://bitcoin.org/about.html. Accessed 2014 Jan 14.
[51]
Bitcoin website. Available: http://bitcoin.org/en/choose-your-wallet. Accessed 2014 Jan 14..
[52]
Available: https://en.bitcoin.it/wiki/Anonymity. Accessed 2014 Jan 14.
[53]
Christin N (2012) Traveling the Silk Road: A measurement analysis of a large anonymous online marketplace. arXiv 1207.7139.
[54]
Bitcoin project website at ELTE. Available: http://www.vo.elte.hu/bitcoin. Accessed 2014 Jan 14.
[55]
Mátray P, Csabai I, Hága P, Stéger J, Dobos L, et al. (2007) Building a prototype for Network Measurement Virtual Observatory. Proc. ACM SIGMETRICS 2007 MineNet Workshop. San Diego, CA, USA DOI:10.1145/1269880.1269887.
[56]
CasJobs web database interface. Available: http://nm.vo.elte.hu/casjobs. Accessed 2014 Jan 14.