全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Diving-Flight Aerodynamics of a Peregrine Falcon (Falco peregrinus)

DOI: 10.1371/journal.pone.0086506

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study investigates the aerodynamics of the falcon Falco peregrinus while diving. During a dive peregrines can reach velocities of more than 320 km h?1. Unfortunately, in freely roaming falcons, these high velocities prohibit a precise determination of flight parameters such as velocity and acceleration as well as body shape and wing contour. Therefore, individual F. peregrinus were trained to dive in front of a vertical dam with a height of 60 m. The presence of a well-defined background allowed us to reconstruct the flight path and the body shape of the falcon during certain flight phases. Flight trajectories were obtained with a stereo high-speed camera system. In addition, body images of the falcon were taken from two perspectives with a high-resolution digital camera. The dam allowed us to match the high-resolution images obtained from the digital camera with the corresponding images taken with the high-speed cameras. Using these data we built a life-size model of F. peregrinus and used it to measure the drag and lift forces in a wind-tunnel. We compared these forces acting on the model with the data obtained from the 3-D flight path trajectory of the diving F. peregrinus. Visualizations of the flow in the wind-tunnel uncovered details of the flow structure around the falcon’s body, which suggests local regions with separation of flow. High-resolution pictures of the diving peregrine indicate that feathers pop-up in the equivalent regions, where flow separation in the model falcon occurred.

References

[1]  del Hoyo J, Elliott A, Sargatal J, Collar NJ (1999) Handbook of the birds of the world, Vol. 5.
[2]  Podbregar N (2013) Das Geheimnis des Fliegens – Tierischen Flugkünstlern auf der Spur: Strategien der Evolution. Springer Berlin Heidelberg: 227–243.
[3]  Tucker VA, Parrott GC (1970) Aerodynamics of gliding flight in a falcon and other birds. Journal of Experimental Biology 52: 345–367.
[4]  Orton DA (1975) The speed of a peregrine’s dive. The Field, September: 588–590.
[5]  Brown LA (1976) British birds of Prey. London: Collins.
[6]  Alerstam T (1987) Radar observations of the stoop of the Peregrine Falcon Falco peregrinus and the Goshawk Accipiter gentilis. Ibis 129: 267–273. doi: 10.1111/j.1474-919x.1987.tb03207.x
[7]  Savage C (1992) Peregrine Falcons. San Francisco: Sierra Club.
[8]  Clark WS (1995) How fast is the fastest bird? WildBird 9: 42–43.
[9]  Tucker VA (1998) Gliding Flight: Speed and acceleration of ideal falcons during diving and pull out. Journal of Experimental Biology 201: 403–414.
[10]  Franklin DC (1999) Evidence of disarray amongst granivorous bird assemblages in the savannas of northern Australia, a region of sparse human settlement. Biological Conservation 90: 53–68. doi: 10.1016/s0006-3207(99)00010-5
[11]  Nachtigall W (1975) Vogelflügel und Gleitflug. Einführung in die aerodynamische Betrachtungsweise des Flügels. Journal für Ornithologie 116: 1–38. doi: 10.1007/bf01643073
[12]  Nachtigall W (1998) Der Gleitflug von V?geln. Physik in unserer Zeit n. 1, 29.
[13]  Lentink D, Müller UK, Stamhuis EJ, de Kat R, van Gestel W, et al. (2007) How swifts control their glide performance with morphing wings. Nature 7139 446: 1082–1085. doi: 10.1038/nature05733
[14]  Ratcliffe DA (1980) The peregrine falcon. Vermillion, S.D: Buteo Books.
[15]  Hustler K (1983) Breeding biology of the peregrine falcon in Zimbabwe. Ostrich 3: 161–171. doi: 10.1080/00306525.1983.9634466
[16]  Tucker VA (1990) Body drag, feathers drag and interference drag of the mounting strut in a peregrine falcon, Falco peregrinus. Journal of Experimental Biology 149: 449–468.
[17]  Seitz K (1999) Vertical flight. NAFA Journal: 68–72.
[18]  Lu FK (2010) Surface oil flow visualization. Eur. Phys. J. Special Topics 182: 51–63. doi: 10.1140/epjst/e2010-01225-0
[19]  Chitty J, Lierz M (2008) Raptor husbandry and falconry techniques. BSAVA Manual of Raptors, Pigeons and Passerines: 7–13.
[20]  Hartley R, Zisserman A (2003) Multiple view geometry in computer vision. 2a ed. Cambridge, UK, New York: Cambridge University Press.
[21]  Lawson NJ, Wu J (1997) Three-dimensional particle image velocimetry: error analysis of stereoscopic techniques. Meas. Sci. Technol. 8: 894–900. doi: 10.1088/0957-0233/8/8/010
[22]  National Geographic (2011) Birds of Prey: High-Velocity Falcons (National Geographic Channel). Available: http://video.nationalgeographic.com/vide?o/animals/birds-animals/birds-of-prey/fa?lcon_peregrine_velocity/.
[23]  Achenbach E (1972) Experiments on the flow past spheres at very high Reynolds numbers. J. Fluid Mech. 54: 565. doi: 10.1017/s0022112072000874
[24]  Schlichting H (1979) Boundary-Layer Theory. McGraw-Hill, New York n. 7th ed.
[25]  Krause E (2003) Str?mungslehre, Gasdynamik und Aerodynamisches Laboratorium. Teubner.
[26]  Adrian RJ (1991) Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech 23: 261–304. doi: 10.1146/annurev.fl.23.010191.001401
[27]  Lüthi B, Tsinober A, Kinzelbach W (2005) Lagrangian measurement of vorticity dynamics in turbulent flow. J. Fluid Mech. 528: 87–118. doi: 10.1017/s0022112004003283
[28]  Robinson SK (1991) Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23: 601–639. doi: 10.1146/annurev.fl.23.010191.003125
[29]  Hussain AKMF (1986) Coherent structures and turbulences. J. Fluid Mech. 173: 303–356. doi: 10.1017/s0022112086001192
[30]  Schatz M, Bunge U, Lübcke H, Thiele F (2001) Numerical Study of Separation Control by Movable Flaps. Aerodynamic Drag Reduction Technologies. NNFM 76: 385–390. doi: 10.1007/978-3-540-45359-8_41
[31]  Carruthers AC, Thomas ALR, Taylor GK (2007) Automatic aeroelastic devices in the wings of a steppe eagle Aquila nipalensis. Journal of Experimental Biology 210: 4136–4149. doi: 10.1242/jeb.011197
[32]  Anderson GW (1973) An experimental investigation of a high lift device on the owl wing. Air Force Institute of Technology. AD-769 492.
[33]  Bechert DW, Bruse M, Hage W, Meyer R (1997) Biological Surfaces and their Technological Application - Laboratory and Flight Experiments on Drag Reduction and Separation Control, AIAA Paper 97–1960 Snowmass Village, CO.
[34]  Favier J, Dauptain A, Basso D, Bottaro A (2009) A Passive separation control using a self-adaptive hairy coating, J. Fluid Mech. 627: 45 1–483.
[35]  Favier J, Pinelli A, Piomelli U (2012) Control of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippers. Comptes Rendus Mecanique 340: 107–114. doi: 10.1016/j.crme.2011.11.004
[36]  Brücker C, Weidner C (2013) Separation control via self-adaptive hairy flaplet arrays. Proc. Int. Symp. ERCOFTAC, “Unsteady separation in fluid-structure interaction”, Mykonos, Greece, June 17–21.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133