Aggressive tumors such as epithelial ovarian cancer (EOC) are highly heterogeneous in their therapeutic response, making it difficult to improve overall response by using drugs in unselected patients. The goal of this study was to retrospectively, but independently, examine whether biomarker-based personalized chemotherapy selection could improve survival of EOC patients. Using in vitro drug sensitivity and patient clinical outcome data, we have developed co-expression extrapolation (COXEN) biomarker models for predicting patient response to three standard chemotherapy drugs used to treat advanced EOC: paclitaxel, cyclophosphamide, and topotecan, for which sufficient patient data were available for our modeling and independent validation. Four different cohorts of 783 EOC patients were used in our study, including two cohorts of 499 patients for independent validation. The COXEN predictors for the three drugs independently showed high prediction both for patient short-term therapeutic response and long-term survival for recurrent EOC. We then examined the potential clinical benefit of the simultaneous use of the three drug predictors for a large diverse EOC cohort in a prospective manner, finding that the median overall survival was 21 months longer for recurrent EOC patients who were treated with the predicted most effective chemotherapies. Survival improvement was greater for platinum-sensitive patients if they were treated with the predicted most beneficial drugs. Following the FDA guidelines for diagnostic prediction analysis, our study has retrospectively, yet independently, showed a potential for biomarker-based personalized chemotherapy selection to significantly improve survival of patients in the heterogeneous EOC population when using standard chemotherapies.
References
[1]
Kim A, Ueda Y, Naka T, Enomoto T (2012) Therapeutic strategies in epithelial ovarian cancer. J Exp Clin Cancer Res 31: 14. doi: 10.1186/1756-9966-31-14
[2]
Bookman MA, Brady MF, McGuire WP, Harper PG, Alberts DS, et al. (2009) Evaluation of new platinum-based treatment regimens in advanced-stage ovarian cancer: a Phase III Trial of the Gynecologic Cancer Intergroup. J Clin Oncol 27: 1419–1425. doi: 10.1200/jco.2008.19.1684
[3]
van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, et al. (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347: 1999–2009. doi: 10.1056/nejmoa021967
[4]
van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–536. doi: 10.1038/415530a
[5]
Spentzos D, Levine DA, Kolia S, Otu H, Boyd J, et al. (2005) Unique gene expression profile based on pathologic response in epithelial ovarian cancer. J Clin Oncol 23: 7911–7918. doi: 10.1200/jco.2005.02.9363
[6]
Helleman J, Jansen MP, Span PN, van Staveren IL, Massuger LF, et al. (2006) Molecular profiling of platinum resistant ovarian cancer. Int J Cancer 118: 1963–1971. doi: 10.1002/ijc.21599
[7]
Williams PD, Cheon S, Havaleshko DM, Jeong H, Cheng F, et al. (2009) Concordant gene expression signatures predict clinical outcomes of cancer patients undergoing systemic therapy. Cancer Res 69: 8302–8309. doi: 10.1158/0008-5472.can-09-0798
[8]
Ferriss JS, Kim Y, Duska L, Birrer M, Levine DA, et al.. (2012) Multi-gene Expression Predictors of Single Drug Responses to Adjuvant Chemotherapy in Ovarian Carcinoma: Predicting Platinum Resistance. PLoS ONE (to appear).
[9]
Moller KA, Gehrig PA, Van Le L, Secord AA, Schorge J (2004) The role of optimal debulking in advanced stage serous carcinoma of the uterus. Gynecol Oncol 94: 170–174. doi: 10.1016/j.ygyno.2004.03.040
[10]
Lee JK, Havaleshko DM, Cho H, Weinstein JN, Kaldjian EP, et al. (2007) A strategy for predicting the chemosensitivity of human cancers and its application to drug discovery. Proc Natl Acad Sci U S A 104: 13086–13091. doi: 10.1073/pnas.0610292104
[11]
Bonome T, Levine DA, Shih J, Randonovich M, Pise-Masison CA, et al. (2008) A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer. Cancer Res 68: 5478–5486. doi: 10.1158/0008-5472.can-07-6595
[12]
Miller AB, Hoogstraten B, Staquet M, Winkler A (1981) Reporting results of cancer treatment. Cancer 47: 207–214. doi: 10.1002/1097-0142(19810101)47:1<207::aid-cncr2820470134>3.0.co;2-6
[13]
Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, et al. (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92: 205–216. doi: 10.1093/jnci/92.3.205
Ferriss JS, Kim Y, Duska L, Birrer M, Levine DA, et al. Multi-gene expression predictors of single drug responses to adjuvant chemotherapy in ovarian carcinoma: predicting platinum resistance. PLoS One 7: e30550. doi: 10.1371/journal.pone.0030550
[16]
Wu R, Hendrix-Lucas N, Kuick R, Zhai Y, Schwartz DR, et al. (2007) Mouse model of human ovarian endometrioid adenocarcinoma based on somatic defects in the Wnt/beta-catenin and PI3K/Pten signaling pathways. Cancer Cell 11: 321–333. doi: 10.1016/j.ccr.2007.02.016
[17]
Lee JK, Bussey KJ, Gwadry FG, Reinhold W, Riddick G, et al. (2003) Comparing cDNA and oligonucleotide array data: concordance of gene expression across platforms for the NCI-60 cancer cells. Genome Biol 4: R82.
[18]
Parmigiani G, Garrett-Mayer ES, Anbazhagan R, Gabrielson E (2004) A cross-study comparison of gene expression studies for the molecular classification of lung cancer. Clin Cancer Res 10: 2922–2927. doi: 10.1158/1078-0432.ccr-03-0490
[19]
Zhou XJ, Kao MC, Huang H, Wong A, Nunez-Iglesias J, et al. (2005) Functional annotation and network reconstruction through cross-platform integration of microarray data. Nat Biotechnol 23: 238–243. doi: 10.1038/nbt1058