Transcranial Magnetic Stimulation (TMS) is a promising technology for both neurology and psychiatry. Positive treatment outcome has been reported, for instance in double blind, multi-center studies on depression. Nonetheless, the application of TMS towards studying and treating brain disorders is still limited by inter-subject variability and lack of model systems accessible to TMS. The latter are required to obtain a deeper understanding of the biophysical foundations of TMS so that the stimulus protocol can be optimized for maximal brain response, while inter-subject variability hinders precise and reliable delivery of stimuli across subjects. Recent studies showed that both of these limitations are in part due to the angular sensitivity of TMS. Thus, a technique that would eradicate the need for precise angular orientation of the coil would improve both the inter-subject reliability of TMS and its effectiveness in model systems. We show here how rotation of the stimulating field relieves the angular sensitivity of TMS and provides improvements in both issues. Field rotation is attained by superposing the fields of two coils positioned orthogonal to each other and operated with a relative phase shift in time. Rotating field TMS (rfTMS) efficiently stimulates both cultured hippocampal networks and rat motor cortex, two neuronal systems that are notoriously difficult to excite magnetically. This opens the possibility of pharmacological and invasive TMS experiments in these model systems. Application of rfTMS to human subjects overcomes the orientation dependence of standard TMS. Thus, rfTMS yields optimal targeting of brain regions where correct orientation cannot be determined (e.g., via motor feedback) and will enable stimulation in brain regions where a preferred axonal orientation does not exist.
References
[1]
O'Reardon JP, Solvason HB, Janicak PG, Sampson S, Isenberg KE, et al. (2007) Efficacy and Safety of Transcranial Magnetic Stimulation in the Acute Treatment of Major Depression: A Multisite Randomized Controlled Trial. Biological Psychiatry 62: 1208–1216 doi:10.1016/j.biopsych.2007.01.018.
[2]
George MS, Nahas Z, Molloy M, Speer AM, Oliver NC, et al. (2000) A controlled trial of daily left prefrontal cortex TMS for treating depression. Biological Psychiatry 48: 962–970 doi:10.1016/S0006-3223(00)01048-9.
[3]
Grisaru N, Amir M, Cohen H, Kaplan Z (1998) Effect of transcranial magnetic stimulation in posttraumatic stress disorder: a preliminary study. Biological Psychiatry 44: 52–55 doi:10.1016/S0006-3223(98)00016-X.
[4]
Aleman A, Sommer IE, Kahn RS (2007) Efficacy of slow repetitive transcranial magnetic stimulation in the treatment of resistant auditory hallucinations in schizophrenia: A meta-analysis. J Clin Psychiatry 68: 416–421. doi: 10.4088/jcp.v68n0310
[5]
Berlim MT, van den Eynde F, Tovar-Perdomo S, Daskalakis ZJ (2013) Response, remission and drop-out rates following high-frequency repetitive transcranial magnetic stimulation (rTMS) for treating major depression: a systematic review and meta-analysis of randomized, double-blind and sham-controlled trials. Psychological Medicine FirstView 1–15 doi:10.1017/S0033291713000512.
[6]
George MS, Padberg F, Schlaepfer TE, O'Reardon JP, Fitzgerald PB, et al. (2009) Controversy: Repetitive transcranial magnetic stimulation or transcranial direct current stimulation shows efficacy in treating psychiatric diseases (depression, mania, schizophrenia, obsessive-complusive disorder, panic, posttraumatic stress disorder). Brain Stimul 2: 14–21 doi:10.1016/j.brs.2008.06.001.
[7]
Huang Y-Z, Sommer M, Thickbroom G, Hamada M, Pascual-Leonne A, et al. (2009) Consensus: New methodologies for brain stimulation. Brain Stimul 2: 2–13 doi:10.1016/j.brs.2008.09.007.
[8]
Sommer M, Alfaro A, Rummel M, Speck S, Lang N, et al. (2006) Half sine, monophasic and biphasic transcranial magnetic stimulation of the human motor cortex. Clinical Neurophysiology 117: 838–844 doi:10.1016/j.clinph.2005.10.029.
[9]
Peterchev AV, Murphy DL, Lisanby SH (2011) Repetitive transcranial magnetic stimulator with controllable pulse parameters. Journal of Neural Engineering 8: 036016 doi:10.1088/1741-2560/8/3/036016.
[10]
Kammer T, Beck S, Thielscher A, Laubis-Herrmann U, Topka H (2001) Motor thresholds in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types. Clinical Neurophysiology 112: 250–258 doi:10.1016/S1388-2457(00)00513-7.
[11]
Luft AR, Kaelin-Lang A, Hauser T-K, Cohen LG, Thakor NV, et al. (2001) Transcranial magnetic stimulation in the rat. Exp Brain Res 140: 112–121 doi:10.1007/s002210100805.
[12]
Luft AR, Kaelin-Lang A, Hauser T-K, Buitrago MM, Thakor NV, et al. (2002) Modulation of rodent cortical motor excitability by somatosensory input. Exp Brain Res 142: 562–569 doi:10.1007/s00221-001-0952-1.
[13]
Nielsen JB, Perez MA, Oudega M, Enriquez-Denton M, Aimonetti J-M (2007) Evaluation of transcranial magnetic stimulation for investigating transmission in descending motor tracts in the rat. European Journal of Neuroscience 25: 805–814 doi:10.1111/j.1460-9568.2007.05326.x.
[14]
Rotenberg A, Muller PA, Vahabzadeh-Hagh AM, Navarro X, López-Vales R, et al. (2010) Lateralization of forelimb motor evoked potentials by transcranial magnetic stimulation in rats. Clinical Neurophysiology 121: 104–108 doi:10.1016/j.clinph.2009.09.008.
[15]
Zhang YP, Shields LBE, Zhang Y, Pei J, Xu X-M, et al. (2007) Use of magnetic stimulation to elicit motor evoked potentials, somatosensory evoked potentials, and H-reflexes in non-sedated rodents. Journal of Neuroscience Methods 165: 9–17 doi:10.1016/j.jneumeth.2007.05.021.
[16]
Funke K, Benali A (2011) Modulation of cortical inhibition by rTMS – findings obtained from animal models. J Physiol 589: 4423–4435 doi:10.1113/jphysiol.2011.206573.
[17]
Rotem A, Moses E (2008) Magnetic Stimulation of One-Dimensional Neuronal Cultures. Biophysical Journal 94: 5065–5078 doi:10.1529/biophysj.107.125708.
[18]
Esser SK, Hill SL, Tononi G (2005) Modeling the Effects of Transcranial Magnetic Stimulation on Cortical Circuits. J Neurophysiol 94: 622–639 doi:10.1152/jn.01230.2004.
[19]
Thielscher A, Opitz A, Will S, Windhoff M (2012) Electric field calculations in brain stimulation: The importance of geometrically accurate head models. Biomed Tech (Berl) doi:10.1515/bmt-2012-4529.
[20]
Wagner T, Eden U, Fregni F, Valero-Cabre A, Ramos-Estebanez C, et al. (2008) Transcranial magnetic stimulation and brain atrophy: a computer-based human brain model study. Exp Brain Res 186: 539–550 doi:10.1007/s00221-007-1258-8.
[21]
Opitz A, Legon W, Rowlands A, Bickel WK, Paulus W, et al. (2013) Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex. Neuroimage 81C: 253–264 doi:10.1016/j.neuroimage.2013.04.067.
[22]
Chiappa KH, Cros D, Cohen D (1991) Magnetic stimulation: determination of coil current flow direction. Neurology 41: 1154–1155. doi: 10.1212/wnl.41.7.1154
[23]
Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, et al. (2004) Direct recording of the output of the motor cortex produced by transcranial magnetic stimulation in a patient with cerebral cortex atrophy. Clinical Neurophysiology 115: 112–115 doi:10.1016/S1388-2457(03)00320-1.
[24]
Sakai K, Ugawa Y, Terao Y, Hanajima R, Furubayashi T, et al. (1997) Preferential activation of different I waves by transcranial magnetic stimulation with a figure-of-eight-shaped coil. Exp Brain Res 113: 24–32 doi:10.1007/BF02454139.
[25]
Roth BJ, Maccabee PJ, Eberle LP, Amassian VE, Hallett M, et al. (1994) In vitro evaluation of a 4-leaf coil design for magnetic stimulation of peripheral nerve. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section 93: 68–74 doi:10.1016/0168-5597(94)90093-0.
[26]
Ruohonen J, Ravazzani P, Grandori F (1998) Functional magnetic stimulation: theory and coil optimization. Bioelectrochemistry and Bioenergetics 47: 213–219 doi:10.1016/S0302-4598(98)00191-3.
[27]
Papa M, Bundman MC, Greenberger V, Segal M (1995) Morphological analysis of dendritic spine development in primary cultures of hippocampal neurons. J Neurosci 15: 1–11.
[28]
Di Lazzaro V, Profice P, Ranieri F, Capone F, Dileone M, et al. (2012) I-wave origin and modulation. Brain Stimul 5: 512–525 doi:10.1016/j.brs.2011.07.008.
[29]
Tings T, Lang N, Tergau F, Paulus W, Sommer M (2005) Orientation-specific fast rTMS maximizes corticospinal inhibition and facilitation. Exp Brain Res 164: 323–333 doi:10.1007/s00221-005-2253-6.