全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Alterations of Pancreatic Islet Structure, Metabolism and Gene Expression in Diet-Induced Obese C57BL/6J Mice

DOI: 10.1371/journal.pone.0086815

Full-Text   Cite this paper   Add to My Lib

Abstract:

The reduction of functional β cell mass is a key feature of type 2 diabetes. Here, we studied metabolic functions and islet gene expression profiles of C57BL/6J mice with naturally occurring nicotinamide nucleotide transhydrogenase (NNT) deletion mutation, a widely used model of diet-induced obesity and diabetes. On high fat diet (HF), the mice developed obesity and hyperinsulinemia, while blood glucose levels were only mildly elevated indicating a substantial capacity to compensate for insulin resistance. The basal serum insulin levels were elevated in HF mice, but insulin secretion in response to glucose load was significantly blunted. Hyperinsulinemia in HF fed mice was associated with an increase in islet mass and size along with higher BrdU incorporation to β cells. The temporal profiles of glucose-stimulated insulin secretion (GSIS) of isolated islets were comparable in HF and normal chow fed mice. Islets isolated from HF fed mice had elevated basal oxygen consumption per islet but failed to increase oxygen consumption further in response to glucose or carbonyl cyanide-4-trifluoromethoxyphenylhydrazon?e(FCCP). To obtain an unbiased assessment of metabolic pathways in islets, we performed microarray analysis comparing gene expression in islets from HF to normal chow-fed mice. A few genes, for example, those genes involved in the protection against oxidative stress (hypoxia upregulated protein 1) and Pgc1α were up-regulated in HF islets. In contrast, several genes in extracellular matrix and other pathways were suppressed in HF islets. These results indicate that islets from C57BL/6J mice with NNT deletion mutation develop structural, metabolic and gene expression features consistent with compensation and decompensation in response to HF diet.

References

[1]  Lam DW, LeRoith D (2012) The worldwide diabetes epidemic. Curr Opin Endocrinol Diabetes Obes 19: 93–96. doi: 10.1097/med.0b013e328350583a
[2]  Sachdeva MM, Stoffers DA (2009) Minireview: Meeting the demand for insulin: molecular mechanisms of adaptive postnatal beta-cell mass expansion. Mol Endocrinol 23: 747–758. doi: 10.1210/me.2008-0400
[3]  Prentki M, Nolan CJ (2006) Islet beta cell failure in type 2 diabetes. J Clin Invest 116: 1802–1812. doi: 10.1172/jci29103
[4]  Boitard C, Accili D, Ahren B, Cerasi E, Seino S, et al.. (2012) The hyperstimulated beta-cell: prelude to diabetes? Diabetes Obes Metab 14 Suppl 3: iv–viii.
[5]  Imamura M, Maeda S (2011) Genetics of type 2 diabetes: the GWAS era and future perspectives [Review]. Endocr J 58: 723–739. doi: 10.1507/endocrj.ej11-0113
[6]  McGill JB (2012) Pharmacotherapy in type 2 diabetes: a functional schema for drug classification. Curr Diabetes Rev 8: 257–267. doi: 10.2174/157339912800840541
[7]  King AJ (2012) The use of animal models in diabetes research. Br J Pharmacol 166: 877–894. doi: 10.1111/j.1476-5381.2012.01911.x
[8]  Hariri N, Thibault L (2010) High-fat diet-induced obesity in animal models. Nutr Res Rev 23: 270–299. doi: 10.1017/s0954422410000168
[9]  Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN (1988) Diet-induced type II diabetes in C57BL/6J mice. Diabetes 37: 1163–1167. doi: 10.2337/diabetes.37.9.1163
[10]  Freeman HC, Hugill A, Dear NT, Ashcroft FM, Cox RD (2006) Deletion of nicotinamide nucleotide transhydrogenase: a new quantitive trait locus accounting for glucose intolerance in C57BL/6J mice. Diabetes 55: 2153–2156. doi: 10.2337/db06-0358
[11]  Teta M, Long SY, Wartschow LM, Rankin MM, Kushner JA (2005) Very slow turnover of beta-cells in aged adult mice. Diabetes 54: 2557–2567. doi: 10.2337/diabetes.54.9.2557
[12]  Imai Y, Patel HR, Hawkins EJ, Doliba NM, Matschinsky FM, et al. (2007) Insulin secretion is increased in pancreatic islets of neuropeptide Y-deficient mice. Endocrinology 148: 5716–5723. doi: 10.1210/en.2007-0404
[13]  Imai Y, Patel HR, Doliba NM, Matschinsky FM, Tobias JW, et al. (2008) Analysis of gene expression in pancreatic islets from diet-induced obese mice. Physiol Genomics 36: 43–51. doi: 10.1152/physiolgenomics.00050.2008
[14]  Doliba NM, Qin W, Najafi H, Liu C, Buettger CW, et al. (2012) Glucokinase activation repairs defective bioenergetics of islets of Langerhans isolated from type 2 diabetics. Am J Physiol Endocrinol Metab 302: E87–E102. doi: 10.1152/ajpendo.00218.2011
[15]  Liang Y, Bai G, Doliba N, Buettger C, Wang L, et al. (1996) Glucose metabolism and insulin release in mouse beta HC9 cells, as model for wild-type pancreatic beta-cells. Am J Physiol 270: E846–857.
[16]  Varela GM, Antwi DA, Dhir R, Yin X, Singhal NS, et al. (2008) Inhibition of ADRP prevents diet-induced insulin resistance. Am J Physiol Gastrointest Liver Physiol 295: G621–628. doi: 10.1152/ajpgi.90204.2008
[17]  Rankin MM, Kushner JA (2009) Adaptive beta-cell proliferation is severely restricted with advanced age. Diabetes 58: 1365–1372. doi: 10.2337/db08-1198
[18]  Kahn SE (2001) Clinical review 135: The importance of beta-cell failure in the development and progression of type 2 diabetes. J Clin Endocrinol Metab 86: 4047–4058. doi: 10.1210/jcem.86.9.7713
[19]  Ahmed M, Forsberg J, Bergsten P (2005) Protein profiling of human pancreatic islets by two-dimensional gel electrophoresis and mass spectrometry. J Proteome Res 4: 931–940. doi: 10.1021/pr050024a
[20]  Yoon JC, Xu G, Deeney JT, Yang SN, Rhee J, et al. (2003) Suppression of beta cell energy metabolism and insulin release by PGC-1alpha. Dev Cell 5: 73–83. doi: 10.1016/s1534-5807(03)00170-9
[21]  Winzell MS, Ahren B (2004) The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53 Suppl 3S215–219. doi: 10.2337/diabetes.53.suppl_3.s215
[22]  Hull RL, Kodama K, Utzschneider KM, Carr DB, Prigeon RL, et al. (2005) Dietary-fat-induced obesity in mice results in beta cell hyperplasia but not increased insulin release: evidence for specificity of impaired beta cell adaptation. Diabetologia 48: 1350–1358. doi: 10.1007/s00125-005-1772-9
[23]  Peyot ML, Pepin E, Lamontagne J, Latour MG, Zarrouki B, et al. (2010) Beta-cell failure in diet-induced obese mice stratified according to body weight gain: secretory dysfunction and altered islet lipid metabolism without steatosis or reduced beta-cell mass. Diabetes 59: 2178–2187. doi: 10.2337/db09-1452
[24]  Karasawa H, Nagata-Goto S, Takaishi K, Kumagae Y (2009) A novel model of type 2 diabetes mellitus based on obesity induced by high-fat diet in BDF1 mice. Metabolism 58: 296–303. doi: 10.1016/j.metabol.2008.09.028
[25]  Tschen SI, Dhawan S, Gurlo T, Bhushan A (2009) Age-dependent decline in beta-cell proliferation restricts the capacity of beta-cell regeneration in mice. Diabetes 58: 1312–1320. doi: 10.2337/db08-1651
[26]  Ahren J, Ahren B, Wierup N (2010) Increased beta-cell volume in mice fed a high-fat diet: a dynamic study over 12 months. Islets 2: 353–356. doi: 10.4161/isl.2.6.13619
[27]  Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T, et al. (2008) Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 8: 325–332. doi: 10.1016/j.cmet.2008.08.009
[28]  Collins SC, Hoppa MB, Walker JN, Amisten S, Abdulkader F, et al. (2010) Progression of diet-induced diabetes in C57BL6J mice involves functional dissociation of Ca2(+) channels from secretory vesicles. Diabetes 59: 1192–1201. doi: 10.2337/db09-0791
[29]  Ling C, Del Guerra S, Lupi R, Ronn T, Granhall C, et al. (2008) Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 51: 615–622. doi: 10.1007/s00125-007-0916-5
[30]  Ikeda J, Kaneda S, Kuwabara K, Ogawa S, Kobayashi T, et al. (1997) Cloning and expression of cDNA encoding the human 150 kDa oxygen-regulated protein, ORP150. Biochem Biophys Res Commun 230: 94–99. doi: 10.1006/bbrc.1996.5890
[31]  Kobayashi T, Ogawa S, Yura T, Yanagi H (2000) Abundant expression of 150-kDa oxygen-regulated protein in mouse pancreatic beta cells is correlated with insulin secretion. Biochem Biophys Res Commun 267: 831–837. doi: 10.1006/bbrc.1999.2052
[32]  Ozawa K, Miyazaki M, Matsuhisa M, Takano K, Nakatani Y, et al. (2005) The endoplasmic reticulum chaperone improves insulin resistance in type 2 diabetes. Diabetes 54: 657–663. doi: 10.2337/diabetes.54.3.657
[33]  Sanson M, Auge N, Vindis C, Muller C, Bando Y, et al. (2009) Oxidized low-density lipoproteins trigger endoplasmic reticulum stress in vascular cells: prevention by oxygen-regulated protein 150 expression. Circ Res 104: 328–336. doi: 10.1161/circresaha.108.183749
[34]  Wang Y, Wu Z, Li D, Wang D, Wang X, et al. (2011) Involvement of oxygen-regulated protein 150 in AMP-activated protein kinase-mediated alleviation of lipid-induced endoplasmic reticulum stress. J Biol Chem 286: 11119–11131. doi: 10.1074/jbc.m110.203323
[35]  Kobayashi T, Ohta Y (2005) 150-kD oxygen-regulated protein is an essential factor for insulin release. Pancreas 30: 299–306. doi: 10.1097/01.mpa.0000163020.63478.fe
[36]  Jensen LT, Host NB (1997) Collagen: scaffold for repair or execution. Cardiovasc Res 33: 535–539. doi: 10.1016/s0008-6363(96)00247-7
[37]  Barallobre-Barreiro J, Didangelos A, Schoendube FA, Drozdov I, Yin X, et al. (2012) Proteomics analysis of cardiac extracellular matrix remodeling in a porcine model of ischemia/reperfusion injury. Circulation 125: 789–802. doi: 10.1161/circulationaha.111.056952
[38]  Ikegawa S (2008) Expression, regulation and function of asporin, a susceptibility gene in common bone and joint diseases. Curr Med Chem 15: 724–728. doi: 10.2174/092986708783885237
[39]  Homo-Delarche F, Calderari S, Irminger JC, Gangnerau MN, Coulaud J, et al. (2006) Islet inflammation and fibrosis in a spontaneous model of type 2 diabetes, the GK rat. Diabetes 55: 1625–1633. doi: 10.2337/db05-1526
[40]  Pick A, Clark J, Kubstrup C, Levisetti M, Pugh W, et al. (1998) Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes 47: 358–364. doi: 10.2337/diabetes.47.3.358
[41]  Ko SH, Kwon HS, Kim SR, Moon SD, Ahn YB, et al. (2004) Ramipril treatment suppresses islet fibrosis in Otsuka Long-Evans Tokushima fatty rats. Biochem Biophys Res Commun 316: 114–122. doi: 10.1016/j.bbrc.2004.02.023
[42]  Masuyama T, Komeda K, Hara A, Noda M, Shinohara M, et al. (2004) Chronological characterization of diabetes development in male Spontaneously Diabetic Torii rats. Biochem Biophys Res Commun 314: 870–877. doi: 10.1016/j.bbrc.2003.12.180
[43]  Stendahl JC, Kaufman DB, Stupp SI (2009) Extracellular matrix in pancreatic islets: relevance to scaffold design and transplantation. Cell Transplant 18: 1–12. doi: 10.3727/096368909788237195

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133