全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

TMPRSS2-ERG Expression Predicts Prostate Cancer Survival and Associates with Stromal Biomarkers

DOI: 10.1371/journal.pone.0086824

Full-Text   Cite this paper   Add to My Lib

Abstract:

The TMPRSS2-ERG gene fusion is found in approximately half of all prostate cancers. The functional and prognostic significance of TMPRSS2-ERG is, however, not fully understood. Based on a historical watchful waiting cohort, an association between TMPRSS2-ERG, evaluated as positive immune staining, and shorter survival of prostate cancer patients was identified. Expression of ERG was also associated with clinical markers such as advanced tumor stage, high Gleason score, presence of metastasis and prognostic tumor cell markers such as high Ki67, pEGFR and pAkt. Novel associations between TMPRSS2-ERG and alterations in the tumor stroma, for example, increased vascular density, hyaluronan and PDGFRβ and decreased Caveolin-1, all known to be associated with an aggressive disease, were found. The present study suggests that the TMPRSS2-ERG fusion gene is associated with a more aggressive prostate cancer phenotype, supported by changes in the tumor stroma.

References

[1]  St John J, Powell K, Conley-Lacomb MK, Chinni SR (2012) TMPRSS2-ERG Fusion Gene Expression in Prostate Tumor Cells and Its Clinical and Biological Significance in Prostate Cancer Progression. J Cancer Sci Ther 4: 94–101. doi: 10.4172/1948-5956.1000119
[2]  Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, et al. (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310: 644–648. doi: 10.1126/science.1117679
[3]  Tomlins SA, Mehra R, Rhodes DR, Smith LR, Roulston D, et al. (2006) TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res 66: 3396–3400. doi: 10.1158/0008-5472.can-06-0168
[4]  Kumar-Sinha C, Tomlins SA, Chinnaiyan AM (2008) Recurrent gene fusions in prostate cancer. Nat Rev Cancer 8: 497–511. doi: 10.1038/nrc2402
[5]  Klezovitch O, Risk M, Coleman I, Lucas JM, Null M, et al. (2008) A causal role for ERG in neoplastic transformation of prostate epithelium. Proc Natl Acad Sci U S A 105: 2105–2110. doi: 10.1073/pnas.0711711105
[6]  King JC, Xu J, Wongvipat J, Hieronymus H, Carver BS, et al. (2009) Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat Genet 41: 524–526. doi: 10.1038/ng.371
[7]  Carver BS, Tran J, Gopalan A, Chen Z, Shaikh S, et al. (2009) Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet 41: 619–624. doi: 10.1038/ng.370
[8]  Tomlins SA, Laxman B, Varambally S, Cao X, Yu J, et al. (2008) Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 10: 177–188. doi: 10.1593/neo.07822
[9]  Pettersson A, Graff RE, Bauer SR, Pitt MJ, Lis RT, et al. (2012) The TMPRSS2:ERG rearrangement, ERG expression, and prostate cancer outcomes: a cohort study and meta-analysis. Cancer Epidemiol Biomarkers Prev 21: 1497–1509. doi: 10.1158/1055-9965.epi-12-0042
[10]  Demichelis F, Fall K, Perner S, Andren O, Schmidt F, et al. (2007) TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene 26: 4596–4599. doi: 10.1038/sj.onc.1210237
[11]  Attard G, Clark J, Ambroisine L, Fisher G, Kovacs G, et al. (2008) Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. Oncogene 27: 253–263. doi: 10.1038/sj.onc.1210640
[12]  van Leenders GJ, Boormans JL, Vissers CJ, Hoogland AM, Bressers AA, et al. (2011) Antibody EPR3864 is specific for ERG genomic fusions in prostate cancer: implications for pathological practice. Mod Pathol 24: 1128–1138. doi: 10.1038/modpathol.2011.65
[13]  Miettinen M, Wang ZF, Paetau A, Tan SH, Dobi A, et al. (2011) ERG transcription factor as an immunohistochemical marker for vascular endothelial tumors and prostatic carcinoma. Am J Surg Pathol 35: 432–441. doi: 10.1097/pas.0b013e318206b67b
[14]  Furusato B, Tan SH, Young D, Dobi A, Sun C, et al. (2010) ERG oncoprotein expression in prostate cancer: clonal progression of ERG-positive tumor cells and potential for ERG-based stratification. Prostate Cancer Prostatic Dis 13: 228–237. doi: 10.1038/pcan.2010.23
[15]  Park K, Tomlins SA, Mudaliar KM, Chiu YL, Esgueva R, et al. (2010) Antibody-based detection of ERG rearrangement-positive prostate cancer. Neoplasia 12: 590–598.
[16]  Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144: 646–674. doi: 10.1016/j.cell.2011.02.013
[17]  H?ggl?f C, Bergh A (2012) The stroma- a key regulator in prostate function and malignancy. Cancers 531–548. doi: 10.3390/cancers4020531
[18]  Ishii K, Mizokami A, Tsunoda T, Iguchi K, Kato M, et al. (2011) Heterogenous induction of carcinoma-associated fibroblast-like differentiation in normal human prostatic fibroblasts by co-culturing with prostate cancer cells. J Cell Biochem 112: 3604–3611. doi: 10.1002/jcb.23291
[19]  Josefsson A, Wikstrom P, Egevad L, Granfors T, Karlberg L, et al. (2012) Low endoglin vascular density and Ki67 index in Gleason score 6 tumours may identify prostate cancer patients suitable for surveillance. Scand J Urol Nephrol 46: 247–257. doi: 10.3109/00365599.2012.669791
[20]  Hammarsten P, Cipriano M, Josefsson A, Stattin P, Egevad L, et al. (2012) Phospho-Akt immunoreactivity in prostate cancer: relationship to disease severity and outcome, Ki67 and phosphorylated EGFR expression. PLoS One 7: e47994. doi: 10.1371/journal.pone.0047994
[21]  Hammarsten P, Karalija A, Josefsson A, Rudolfsson SH, Wikstrom P, et al. (2010) Low levels of phosphorylated epidermal growth factor receptor in nonmalignant and malignant prostate tissue predict favorable outcome in prostate cancer patients. Clin Cancer Res 16: 1245–1255. doi: 10.1158/1078-0432.ccr-09-0103
[22]  Hagglof C, Hammarsten P, Josefsson A, Stattin P, Paulsson J, et al. (2010) Stromal PDGFRbeta expression in prostate tumors and non-malignant prostate tissue predicts prostate cancer survival. PLoS One 5: e10747. doi: 10.1371/journal.pone.0010747
[23]  Josefsson A, Adamo H, Hammarsten P, Granfors T, Stattin P, et al. (2011) Prostate cancer increases hyaluronan in surrounding nonmalignant stroma, and this response is associated with tumor growth and an unfavorable outcome. Am J Pathol 179: 1961–1968. doi: 10.1016/j.ajpath.2011.06.005
[24]  Wikstrom P, Marusic J, Stattin P, Bergh A (2009) Low stroma androgen receptor level in normal and tumor prostate tissue is related to poor outcome in prostate cancer patients. Prostate 69: 799–809. doi: 10.1002/pros.20927
[25]  Johansson A, Rudolfsson S, Hammarsten P, Halin S, Pietras K, et al. (2010) Mast cells are novel independent prognostic markers in prostate cancer and represent a target for therapy. Am J Pathol 177: 1031–1041. doi: 10.2353/ajpath.2010.100070
[26]  Hugosson J, Carlsson S, Aus G, Bergdahl S, Khatami A, et al. (2010) Mortality results from the Goteborg randomised population-based prostate-cancer screening trial. Lancet Oncol 11: 725–732. doi: 10.1016/s1470-2045(10)70146-7
[27]  Perner S, Svensson MA, Hossain RR, Day JR, Groskopf J, et al. (2010) ERG rearrangement metastasis patterns in locally advanced prostate cancer. Urology 75: 762–767. doi: 10.1016/j.urology.2009.10.010
[28]  Mehra R, Han B, Tomlins SA, Wang L, Menon A, et al. (2007) Heterogeneity of TMPRSS2 gene rearrangements in multifocal prostate adenocarcinoma: molecular evidence for an independent group of diseases. Cancer Res 67: 7991–7995. doi: 10.1158/0008-5472.can-07-2043
[29]  van der Heul-Nieuwenhuijsen L, Hendriksen PJ, van der Kwast TH, Jenster G (2006) Gene expression profiling of the human prostate zones. BJU Int 98: 886–897. doi: 10.1111/j.1464-410x.2006.06427.x
[30]  Sakai I, Harada K, Hara I, Eto H, Miyake H (2005) A comparison of the biological features between prostate cancers arising in the transition and peripheral zones. BJU Int 96: 528–532. doi: 10.1111/j.1464-410x.2005.05678.x
[31]  Ostman A, Augsten M (2009) Cancer-associated fibroblasts and tumor growth–bystanders turning into key players. Curr Opin Genet Dev 19: 67–73. doi: 10.1016/j.gde.2009.01.003
[32]  Ostman A (2012) The tumor microenvironment controls drug sensitivity. Nat Med 18: 1332–1334. doi: 10.1038/nm.2938
[33]  Pietras K, Ostman A (2010) Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 316: 1324–1331. doi: 10.1016/j.yexcr.2010.02.045
[34]  Tchou J, Kossenkov AV, Chang L, Satija C, Herlyn M, et al. (2012) Human breast cancer associated fibroblasts exhibit subtype specific gene expression profiles. BMC Med Genomics 5: 39. doi: 10.1186/1755-8794-5-39
[35]  Ayala G, Morello M, Frolov A, You S, Li R, et al. (2013) Loss of caveolin-1 in prostate cancer stroma correlates with reduced relapse-free survival and is functionally relevant to tumour progression. J Pathol 231: 77–87. doi: 10.1002/path.4217
[36]  Schoenborn JR, Nelson P, Fang M (2013) Genomic profiling defines subtypes of prostate cancer with the potential for therapeutic stratification. Clin Cancer Res 19: 4058–4066. doi: 10.1158/1078-0432.ccr-12-3606
[37]  Egevad L, Granfors T, Karlberg L, Bergh A, Stattin P (2002) Prognostic value of the Gleason score in prostate cancer. BJU Int 89: 538–542. doi: 10.1046/j.1464-410x.2002.02669.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133